Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Вишневсмийнию ТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Должность: Ректор (МИНОБРНАУКИ РОССИИ)

Дата подписания: 30.04.2025 11:55:50

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

Уникальный программный ключ: 03474917c4d012283e5ad996**ОБРАВОВА**ТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ДОНБАССКИЙ ГО СУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

(ФГБОУ ВО «ДонГТУ»)

Факультет Кафедра

горнометаллургической промышленности и строительства машин металлургического комплекса

> УТВЕРЖДАЮ И о проректора по учебной работе Д.В. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Подъемно-транспортные машины				
	(наименование дисциплины)			
15.03.0	2 Технологические машины и оборудование			
	(код, наименование направления)			
Металлургическое оборудование				
(профиль подготовки)				
Квалификация	бакалавр			
(бакалавр/специалист/магистр)				
Форма обучения	очная, заочная			
	(OHING OHIO-SOUMER SOUMER)			

1 Цели и задачи изучения дисциплины

Цели дисциплины. Целью освоения «Подъемнодисциплины транспортные является формирование машины» y студентов систематизированных знаний по конструкциям металлургических подъёмнотранспортных машин в целом и их отдельных узлов в частности, формирование знаний по особенностям конструкций и методам расчёта подъёмно-транспортных металлургического машин для условий производства. Изучение данной дисциплины призвано дать студентам теоретические знания по конструкциям МПТМ и практические навыки по эксплуатации подъемно-транспортных машин.

Задачи изучения дисциплины:

- изучение методики расчета гибких тяговых органов с учетом требований Ростехнадзора;
- освоение методики расчета (подбора) тормозных и остановочных устройств;
 - приобретение навыков компоновки основных крановых механизмов;
- освоение методики расчета приводов крановых механизмов в период неустановившегося движения;
- изучение методики выбора двигателей, редукторов, грузозахватных устройств из числа нормализованных или стандартных;
 - освоение методики расчета крановых металлоконструкций.

Дисциплина направлена на формирование профессиональной (ПК-3) компетенции выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины — курс входит в часть БЛОК 1 «Дисциплины (модули)», формируемые участниками образовательных отношений по направлению подготовки 15.03.02 Технологические машины и оборудование (профиль подготовки «Металлургическое оборудование»). Дисциплина реализуется кафедрой машин металлургического комплекса.

Основывается на базе дисциплин: сопротивление материалов, теория механизмов и машин, материаловедение, основы САПР.

Компетенции, освоенные в ходе изучения дисциплины, направлены на формирование знаний в области конструктивных особенностей подъемнотранспортного и погрузочно-разгрузочного оборудования, проведения мониторинга и контроля за эксплуатацией подъемно-транспортных и погрузочно-разгрузочных операций.

Общая трудоемкость освоения дисциплины составляет 5 зачетных единиц, 180 ак.ч.

При очной форме обучения дисциплина изучается на 3 курсе в 6 семестре. Программой дисциплины предусмотрены лекционные (36 ак.ч.), практические (18 ак.ч.) занятия, лабораторные (18 ак.ч.) занятия и самостоятельная работа студента (72 ак.ч.); на 3 курсе в 6 семестре программой предусмотрено выполнение курсовой работы в объеме 36 ак.ч., из них практические занятия (18 ак.ч.) и самостоятельная работа (18 ак.ч.).

При заочной форме обучения дисциплина изучается на 4 курсе в 7 семестре. Программой дисциплины предусмотрены лекционные (6 ак.ч.), лабораторные (2 ак.ч.) и практические (4 ак.ч.) занятия и самостоятельная работа студента (132 ак.ч.), выполнение курсовой работы в объеме – практические занятия (2 ак.ч.), самостоятельная работа (34 ак.ч.).

Форма промежуточной аттестации – экзамен, курсовая работа – дифференцированный зачет.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Подъемно-транспортные машины» направлен на формирование компетенций, представленных в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание компетенции	Код компетенции	Код и наименование индикатора достижения компетенции		
Профессиональные компетенции				
Способен контролировать работу технологических машин и оборудования металлургического комплекса	ПК-3	ПК-3.1 Знать состав и правила разработки эксплуатационной документации ПК-3.2 Знать прикладные компьютерные программы для работы с графической информацией ПК-3.3 Знать типы и конструктивные особенности средств автоматизации и механизации технологических, подъемнотранспортных, погрузочно-разгрузочных операций. ПК-3.4 Знать возможности и конструктивные особенности средств технической диагностики ПК-3.5 Уметь контролировать правильность эксплуатации работниками средств автоматизации и механизации технологических подъемно-транспортных, погрузочно-разгрузочных операций.		

4. Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 5 зачётных единицы, 180 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к текущему контролю, самостоятельное изучение материала, подготовку к экзамену, выполнение курсовой работы.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

D	D	Ак.ч. по семестрам		
Вид учебной работы	Всего ак.ч.	5	6	
Аудиторная работа, в том числе:	90	72	18	
Лекции (Л)	36	36		
Практические занятия (ПЗ)	18	18	-	
Лабораторные работы (ЛР)	18	18	-	
Курсовая работа/курсовой проект (ПЗ)	-	-	18	
Самостоятельная работа студентов (СРС), в	90	72	18	
том числе:	90	12	10	
Подготовка к лекциям	9	9	-	
Подготовка к лабораторным работам	-	-	-	
Подготовка к практическим занятиям /	36	36	-	
семинарам				
Выполнение курсовой работы / проекта	18	-	18	
Расчетно-графическая работа (РГР)	-	-	-	
Реферат (индивидуальное задание)	-	-	-	
Домашнее задание	-	-	-	
Подготовка к контрольной работе	3	3	-	
Подготовка к коллоквиуму	-	-	-	
Аналитический информационный поиск	-	-	-	
Работа в библиотеке	-	-	-	
Подготовка к экзамену	24	24	-	
Промежуточная аттестация – экзамен (Э)	Э	Э		
Промежуточная аттестация – диф.зачет (Д/З)	(Д/3)		(Д/3)	
Общая трудоемкость дисциплины				
ак.ч.	180	144	36	
3.e.	4	4	1	

5.Содержание дисциплины

С целью освоения компетенции, приведенной в п.3 дисциплина разбита на 2 темы:

- тема 1 (Грузоподъемные машины)
- тема 2 (Транспортирующие машины)

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

		г по дисциплине и распределение аудит				_	I
No	Наименование темы		Трудоем-		Трудоем-	Тема	Трудоем-
п/п	u ,, ,	Содержание лекционных занятий	кость	практических	кость	лабораторных занятий	кость
	дисциплины		в ак.ч.	занятий	в ак.ч.		в ак.ч.
		Простейшие грузоподъёмные механизмы и физические принципы их работы.	2	Расчёт механизма передвижения мостового крана /Пр/	2	Изучение работы механизма подъема и установление кратности его полиспаста	2
		Мостовые металлургические краны. Козловые краны. Краны манипуляторы	2	_	-	_	_
		Детали и узлы механизмов подъема: гибкие элементы, блоки и звездочки, полиспасты, барабаны, грузозахватные устройства	4	Расчёт механизма поворота грузоподъёмного крана	2	Изучение конструкции и регулировка тормоза	4
1	Грузоподъемные машины	Остановы и тормоза	4	Расчёт барабана механизма подъёма	2	_	_
		Приводы грузоподъемных машин	4	Расчёт металлоконструкции мостового двухбалочного крана	2	Выбор конструкции моста коробчатого типа и проверка его жесткости	4
		Механизмы грузоподъемных машин	4	_	-	_	_
		Приборы безопасности. Аппаратура управления и защиты	2	Расчёт механизма подъёма мостового крана	2	Определение факторов и норм выбраковки стальных канатов	4
		Металлические конструкции кранов	2	_	_	_	

$N_{\underline{0}}$	Наименование темы		Трудоем-	Темы	Трудоем-	Тема	Трудоем-
Π/Π	(раздела)	Содержание лекционных занятий	кость	практических	кость	лабораторных занятий	кость
	дисциплины		в ак.ч.	занятий	в ак.ч.		в ак.ч.
		Ленточные, цепные, роликовые, вибрационные, винтовые конвейеры.	4	Расчёт пластинчатого конвейера	2	Установление факторов, влияющих на продуктивность ленточных конвейеров	4
2	Транспортирующие	Пневматические и гидравлические транспортирующие устройства.	2	Выбор электродвигателя для конвейера	2	_	_
	машины	Стопоры и ловители машин непрерывного транспорта. Ковшовые, полочные и люлечные элеваторы	4	Составление конструктивной схемы вибрационного конвейера	2	_	_
		Техническое освидетельствование грузоподъёмных и транспортирующих машин	2	Определение режима работы ленточного конвейера	2	_	_
				Расчет механизма подъема	8	_	_
Курсовая р	Курсовая работа			Расчет механизма передвижения	8	_	_
				Устройства, обеспечивающие безопасность работы	2	_	_
	Всего аудиторных ча	COB	36		36	_	18

Таблица 4 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

№ π/π	Наименование раздела дисциплины	Содержание лекционных занятий	Трудоем- кость в ак.ч.	Темы Практических занятий	Трудоем- кость в ак.ч.	Тема лабораторных занятий	Трудоем- кость в ак.ч.
1	Грузоподъемные	Мостовые металлургические краны. Козловые краны. Краны манипуляторы	2	Расчёт механизма передвижения мостового крана Расчёт	2	Изучение работы механизма подъема	
1	машины	Детали и узлы механизмов подъема: гибкие элементы, блоки и звездочки, полиспасты, барабаны, грузозахватные устройства	4	металлоконструкц ии мостового двухбалочного крана	2	и установление кратности его полиспаста	2
	Курсовая работа			Расчет механизма подъема	2	Т	_
Всего аудиторных часов		6		6	_	2	

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
ПК-7	Экзамен	Комплект контролирующих материалов для экзамена
11K-7	Диф/зачет	Пояснительная записка курсовой работы

Всего по текущей работе в семестре студент может набрать 100 баллов по дисциплине и 100 баллов по курсовой работе.

Экзамен проставляется автоматически, если студент выполнил и успешно защитил все практические и контрольные работы. В случае, если полученная в семестре сумма баллов не устраивает студента, он имеет право повысить итоговую оценку в форме устного собеседования по приведенным ниже вопросам (п.п. 6.4).

За выполненную и защищенную курсовую работу студент может получить 100 баллов. Из них максимум 60 баллов за выполнение и 40 баллов за защиту.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баннов за все вини	Оценка по национальной	Оценка по национальной	
Сумма баллов за все виды	шкале	шкале	
учебной деятельности	экзамен	Диф/зачёт	
0-59	неудовлетворительно	неудовлетворительно	
60-73	удовлетворительно	удовлетворительно	
74-89	хорошо	хорошо	
90-100	онрилто	онрицто	

6.2 Домашнее задание

Домашнее задание не предусмотрено

6.3 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

1) Какова допустимая величина минимального расстояния между верхом
крюковой подвески и низом тележки после остановки крюковой подвески в
крайнем верхнем положении:

- а) 100 мм;
- б) 50 мм;
- в) 200 мм;
- г) 300 мм;
- д) 150 мм.
- 2) На какую величину относительно номинальной грузоподъемности допускается перегрузка крана электромостового типа при подъеме груза:
 - а) на 5%;
 - б) на 10%;
 - в) на 15%;
 - г) на 20%;
 - д) на 25%.
- 3) При какой величине перегрузки крана башенного (стрелового) типа отключается электродвигатель механизма подъема груза:
 - а) при 5%;
 - б) при 10%;
 - в) при 15%;
 - г) при 20%;
 - д) при 25%.
- 4) При какой величине перегрузки автоматически отключается электродвигатель механизма подъема портального крана:
 - а) при 20%;
 - б) при 25%;
 - в) при 15%;
 - г) при 10%;
 - д) при 5%.
- 5) Какова допустимая величина минимального расстояния между верхом крюковой подвески и барабаном (упором) у электроталей при незагруженном крюке:
 - а) 200 мм;
 - б) 50 мм;
 - в) 80 мм;
 - г) 100 мм;
 - д) 150 мм.

- 6) В каком из перечисленных случаев возможно применение укороченной крюковой подвески:
 - а) в подвижной части подвеске 5 канатоведущих блоков;
 - б) в подвижной части подвеске 3 канатоведущих блока;
 - в) в подвижной части подвеске 4 канатоведущих блока;
 - г) возможно только при четном количестве канатоведущих блоков в подвижной части крюковой подвески;
 - д) при любом количестве канатоведущих блоков.
- 7) Если окружные скорости барабанов одинаковы, то в каком из перечисленных ниже случаев скорость подъема груза будет наименьшей:
 - а) в сдвоенном полиспасте крюковая подвеска висит на 8 ветвях каната;
 - б) в сдвоенном полиспасте крюковая подвеска висит на 6 ветвях каната;
 - в) в сдвоенном полиспасте крюковая подвеска висит на 4 ветвях каната;
 - г) в сдвоенном полиспасте крюковая подвеска висит на 10 ветвях каната;
 - д) в сдвоенном полиспасте крюковая подвеска висит на 12 ветвях каната.
- 8) При какой частоте вращения подшипника качения в опорном узле производится его выбор (расчет) по статической грузоподъемности:
 - a) n > 1 мин⁻¹;
 - б) $n \ge 2$ мин⁻¹;
 - в) n > 10 мин⁻¹;
 - Γ) n < 1 мин⁻¹;
 - д) n < 10 мин⁻¹.
- 9) По какой из перечисленных формул определяют наибольшее натяжение ленты в ленточном тормозе:
 - a) $T_{\text{max}} = t \cdot \ln e^{f\alpha}$;
 - $T_{\text{max}} = \frac{t}{e^{f\alpha}}$;
 - $T_{\max} = \frac{\ln e^{f\alpha}}{t};$
 - $T_{\max} = t \cdot e^{f\alpha}$
 - $t = \frac{T_{\text{max}}}{e^{f\alpha}}$.
- 10) Каков минимальный угол (в радианах) обхвата барабана запасными (неприкасаемыми) витками каната допускается по нормам Госнадзорохрантруда Украины:
 - a) $1,5\Pi;$
 - б) 2,5П;
 - в) 1Π;

- Γ) 5Π;
- д) 3П.
- 11) Каким грузом производят динамические испытание механизмов мостовых кранов, если $Q_{\rm H}$ номинальная (паспортная) грузоподъемность):
 - a) $1{,}15 Q_{H}$;
 - 6) $^{1,3}Q_{H}$;
 - $_{\rm B})^{1}Q_{\scriptscriptstyle H};$
 - Γ) 1,1 Q_{H} :
 - д) $1,05 Q_{H}$.
- 12) Каким грузом производят статическое испытание мостовых кранов, если $Q_{\rm \scriptscriptstyle H}$ номинальная (паспортная) грузоподъемность:
 - a) $^{1,1}Q_{H}$;
 - б) $1,2 Q_{H}$;
 - B) $1,25 Q_{H}$;
 - $_{\Gamma}$) 1,05 Q_{H} :
 - л) $1,4 Q_{H}$.
- 13) Из каких нижеперечисленных сталей изготавливают грузозахватные крюки механизмов подъема крана:
 - а) сталь 45; Сталь 50Г;
 - б) сталь 20; сталь 20Г;
 - в) сталь 40; сталь 35;
 - г) сталь5; сталь 20;
 - д) сталь 10; сталь 20Г.
- 14) Если в механизме подъема мостового крана устанавливают 2 тормоза, то какой должен быть коэффициент запаса торможения каждого тормоза:
 - a) K=1,2;
 - б) K=1,25;
 - $^{\circ}$ K=1,35;
 - г) K=1,4;
 - д) К=1,5.
- 15) Если окружные скорости барабанов одинаковы, то в каком из перечисленных ниже случаев скорость подъема груза будет наименьшей:
 - а) в сдвоенном полиспасте крюковая подвеска висит на 8 ветвях каната;
 - б) в сдвоенном полиспасте крюковая подвеска висит на 6 ветвях каната;
 - в) в сдвоенном полиспасте крюковая подвеска висит на 4 ветвях каната;
 - г) в сдвоенном полиспасте крюковая подвеска висит на 10 ветвях каната;

- д) в сдвоенном полиспасте крюковая подвеска висит на 12 ветвях каната.
- 16) Какие деформации испытывает металл болта узла крепления конца каната прижимают планкой на поверхности барабана:
 - а) сжатие и кручение;
 - б) сжатие и изгиб;
 - в) изгиб и растяжение;
 - г) кручение и изгиб;
 - д) растяжение и кручение.
- 17) Какой элемент конструкции современного колодочного тормоза создает нагрузку (усилие), замыкающее тормоз:
 - а) электромагнит;
 - б) гидротолкатель;
 - в) пневмоцилиндр;
 - г) торсионный вал;
 - д) упругосжатая пружина.
- 18) Чем отличается конструкция желоба на ободе блоков, предназначенных для направления движения каната и направления движения, овальнозвенной цепи:
 - а) углом наклона боковых поверхностей желоба;
 - б) рельефом поверхности желоба;
 - в) диаметром по оси навиваемого гибкого элемента;
 - г) шероховатостью поверхности желоба;
 - д) толщиной стенки желоба.
- 19) Какой элемент конструкции современных колодочных тормозов создает нагрузку (усилие) размыкания тормоза:
 - а) сила тяжести (груз);
 - б) упруго сжатая пружина;
 - в) электромагнит или электрогидротолкатель;
 - г) пневмоцилиндр;
 - д) торсионный вал.
- 20) При каком способе крепления к тормозной колодке фрикционной накладки остается наименьшая толщина неиспользованного тела материала накладки:
 - а) крепление стальными заклепками;
 - б) крепление струбцинами;
 - в) крепление склеиванием;
 - г) крепление заклепками из цветных металлов;
 - д) крепление загибом накладки.
- 21) Какие деформации испытывает стенка корпуса (обечайка) барабана механизма подъема в процессе подъема (опускания) груза:

- а) сжатие и кручение;
- б) изгиб и кручение;
- в) изгиб и сжатие
- г) сжатие, изгиб и кручение;
- д) растяжение и сжатие.
- 22) Почему барабаны механизмов подъема тяжело нагруженных кранов выполняют из стального литья, а не из чугуна:
 - а) из-за лучших литейных свойств стали;
 - б) из-за опасности внезапного разрушения;
 - в) из-за лучшей обрабатываемости стали;
 - г) из-за большего коэффициента трения между стальным барабаном и канатом.
 - д) из-за удобства крепления конуса каната на барабане.
- 23) В каких случаях в механизмах подъема применяются канаты с металлическим сердечником:
 - а) при работе машины в запыленных помещениях;
 - б) при работе машины в неотапливаемых помещениях;
 - в) при многослойной навивке каната на барабан;
 - г) при невозможности смазывания каната;
 - д) при перемещении длинномерных грузов.
- 24) Почему шаг нарезки канавок для укладки каната на барабане несколько больше диаметра принятого каната:
 - а) для удобства нарезки канавок на станке;
 - б) для повышения прочности корпуса барабана;
 - в) для исключения соприкосновения (трения) соседних ветвей каната;
 - г) для уменьшения длины барабана;
 - д) для снижения сжимающих корпус барабана нагрузок.
- 25) По какой из приведенных формул определяют натяжение ветви каната перед первой крепежной планкой в узле крепления на барабане:

$$S_{\max} = \frac{S_{\kappa p}}{e^{f lpha}};$$
 $e^{f lpha} = \frac{S_{\kappa p}}{S_{\max}};$
 $S_{\kappa p} = \frac{S_{\max}}{e^{f lpha}};$
 $S_{\max} \cdot e^{f lpha} = S_{\kappa p};$
 $S_{\kappa p} = \frac{S_{\max}}{1 + e^{f lpha}}.$

- 26) Какой операции подвергаются металлические пластинчатые крюки после изготовления и перед установкой в механизм подъема крюка:
 - а) взвешиванию;
 - б) смазыванию;
 - в) покраске;
 - г) контролю на УЗИ;
 - д) очистке от пыли.
 - 27) В крановых механизмах используются электродвигатели:
 - а) длительного режима;
 - б) кратковременного режима;
 - в) общего назначения;
 - г) повторно-кратковременного режима;
 - д) режим безразличен.
- 28) Если крутящий момент на барабане равен $^{M_{\delta}}$, а передаточное число механизма подъема i_o , КПД механизма $^{\eta_{\scriptscriptstyle M}}$, то требуемый момент двигателя $^{M_{\delta}}$ для подъема груза определяется:

a)
$$M_{\partial} = M_{\delta} \cdot i_{o} \cdot \eta_{M}$$
;
$$M_{\partial} = \frac{M_{\delta} \cdot i_{o}^{2}}{\eta_{M}}$$
;
$$M_{\partial} = \frac{M_{\delta}}{i_{o}^{2} \cdot \eta_{M}}$$
;
$$M_{\partial} = \frac{M_{\delta}}{i_{o} \cdot \eta^{M}}$$
;
$$M_{\partial} = \frac{M_{\delta}}{i_{o} \cdot \eta^{M}}$$
;
$$M_{\partial} = \frac{i_{o} \cdot \eta^{M}}{M_{\delta}}$$

- 29) Если диаметры канатотянущих барабанов одинаковы по величине, то при подъеме груза массой $^{\it Q}$ наибольший крутящий момент $^{\it T}_{\it \kappa p}$ на барабане будет при какой из нижеприведенных кратностей полиспаста:
 - a) u = 4;
 - 6) u = 6;
 - B) u = 5;
 - Γ) u=3;
 - Π) u=2.
- 30) За счет чего происходит выравнивание перекоса моста с раздельным приводом механизма передвижения крана:
 - а) за счет регулировки машинистом частоты вращения двигателя;

- б) за счет перераспределения нагрузки на двигателях вследствие перекоса;
- в) за счет регулировки тормозов;
- г) за счет упругой деформации моста;
- д) за счет изменения положения тележки на мосту.
- 31) Какое из нижеперечисленных число z витков каната навьется на барабан диаметром 800 мм, если высота подъема груза 12560 мм, а кратность одинарного полиспаста 4, если число запасных витков 2, число витков занятых креплением 3.
 - a) z = 25;
 - δ) z = 15;
 - B) z = 10:
 - Γ) z = 40;
 - IД) z = 30.
- 32) Если у простого полиспаста 3 (три) грузонесущих ветви каната, а скорость навивания (набегания) ветви каната на барабан 15 м/мин, то какая скорость подъема груза при этом:
 - a) $V_{\rm rp} = 2 \text{ M/MUH}$;
 - б) $V_{\rm rp} = 6 \, \text{м/мин}$;
 - $V_{\rm rp} = 5 \, {\rm M/MИH} \, ;$ $V_{\rm rp} = 3 \, {\rm M/MИH} \, ;$ $V_{\rm rp} = 3 \, {\rm M/MИH} \, ;$

 - $V_{\rm rp} = 4 \text{ M/MuH}^{\dagger}$
- 33) От чего зависит число витков нарезки (канавок) на барабане для наматывания каната при одной и той же высоте подъема груза:
 - а) от диаметра каната;
 - б) от величины поднимаемого груза;
 - в) от кратности полиспаста;
 - г) от толщины стенки барабана;
 - д) от скорости подъема груза.
- 34) При какой величине угла обхвата барабана запасными витками нагрузка на элементы узла крепления конца к барабану будет наименьшей:
 - a) при $\alpha = 2\Pi$;
 - б) при $\alpha = 3\Pi$;
 - B) при $\alpha = 1.5\Pi$;
 - Γ) при $\alpha = 5\Pi$;
 - д) при $\alpha = 3.5\Pi$.
- 35) У какого типа канатов с органическим сердечником лучшее заполнение сечения материалом проволочек:

- а) у канатов с ТЛК;
- б) у канатов с ТКО;
- в) у канатов с ЛК-О;
- г) у канатов с ТКР;
- д) у канатов комбинированной свивки.
- 36) Для чего используются конические барабаны в грузовых механизмах:
 - а) для многослойной навивки каната;
 - б) для обеспечения лучшей укладки каната;
 - в) для устранения неравномерного натяжения каната;
 - г) для обеспечения постоянной скорости навивки барабана;
 - д) для обеспечения постоянного момента от сил сопротивления.

6.4 Оценочные средства для промежуточной аттестации (экзамен)

- 1) Какое назначение и классификация подъемно-транспортных машин?
- 2) Какое назначение и классификация грузоподъемных машин?
- 3) Какая конструкция и основные параметры мостовых кранов общего назначения и опорных двухбалочных электроприводом?
- 4) Какие основные параметры грузоподъемных машин и их численное значение?
- 5) Какие электродвигатели применяются в механизмах подъема и передвижения ГПМ?
- 6) Какая структура и классификация стальных канатов? По какой методике осуществляется их расчет и выбор?
- 7) Как произвести выбор и расчет грузовых цепей сварных и пластинчатых?
- 8) Какая конструкция блоков и барабанов для стальных канатов? Как производится расчет их геометрических параметров?
- 9) Какова конструкция и структура расчета канатоприемного барабана механизма подъема?
- 10) Какие способы крапления каната к барабану?
- 11) Как определяется КПД блока и полиспаста? Каким образом КПД влияет на энергозатраты привода?
- 12) Что такое одинарные и сдвоенные полиспасты? Какие существуют способы определения кратности полиспастов?
- 13) Как осуществляется подбор крюков?
- 14) Что такое крюковые подвески, и какие типы их существуют?
- 15) Как осуществляется расчет элементов крюковой подвески: траверсы, серег, оси блоков?
- 16) Какие храповые и роликовые остановы вы знаете? Какие у них конструктивные особенности?
- 17) Каков принцип работы колодочных тормозов их конструкция? Как определить тормозной момент среднего давления между шкивом и колодкой тормоза?
- 18) Какие виды и конструкция размыкающих устройств, колодочных тормозов?
- 19) Какая схема, конструкция ленточного тормоза? Как определяется тормозной момент?
- 20) Как осуществляется определение мощности и выбор электродвигателя механизма подъема ГПМ?
- 21) Каков порядок расчета электродвигателя механизма подъема на нагрев? Среднеквадратичный момент и мощность?
- 22) Какие схемы механизмов передвижения ГПМ, их сравнительная характеристика?
- 23) Какое сопротивление перемещению крана? Как осуществляется определение мощности привода и выбор электродвигателя?
- 24) Каков принцип работы и конструктивные особенности ходовой части

- механизмов передвижения: крановые колеса и рельсы?
- 25) Как произвести расчет ходовых колес?
- 26) Какая методика выбора двигателя и определение тормозного момента для механизмов передвижения ГПМ?
- 27) Как осуществляется организация надзора, устройство концевой защиты, ограничители грузоподъемности?
- 28) Какие металлические конструкции ГПМ применяются в металлургическом производстве? Из какого материала выполняются? Какие расчетные нагрузки?
- 29) Какие основные положения расчета и конструирования металлоконструкций?
- 30) Какие схемы соединения барабана с редуктором в механизмах подъема ГПМ?
- 31) Какое назначение, классификация и основные параметры машин непрерывного транспорта (МНТ)?
- 32) Какие характеристики транспортируемых грузов бывают?
- 33) Как определяется производительность МНТ при транспортировании насыпных и штучных грузов?
- 34) Какое сопротивление движению тягового органа конвейера?
- 35) Из каких основных элементов состоят ленточные конвейеры?
- 36) Какая конструкция станов и роликовых опор?
- 37) Какие приводы конвейеров и натяжные устройства?
- 38) Как произвести расчет ленточных конвейеров: определение ширины ленты и скорости ее движения, погонных нагрузок от транспортируемого груза, веса вращающихся частей роликов, веса ленты?
- 39) Какие способы повышения тяговой способности ленточных конвейеров существуют?
- 40) Как определить первоначальную (минимальную) величину натяжения ленты?
- 41) Как произвести расчет ленточных конвейеров: определение сопротивлений в загрузочном, разгрузочном, очистных устройствах и элементы проверочного расчета?
- 42) Как осуществляется проверка электродвигателя ленточного конвейера на пусковой режим?
- 43) Каков принцип работы и конструктивные особенности пластинчатых конвейеров?
- 44) Каков принцип работы и конструктивные особенности скребковых конвейеров?
- 45) Каков принцип работы и конструктивные особенности ковшовых конвейеров?
- 46) Каков принцип работы и конструктивные особенности подвесных конвейеров?
- 47) Какое назначение, классификация и устройство элеваторов?

- 48) Каков принцип работы и конструктивные особенности винтовых конвейеров?
- 49) Как определить сопротивление перемешенного груза и винтового конвейера?
- 50) Каков принцип работы и конструктивные особенности вибрационных конвейеров?
- 51) Каков принцип работы и конструктивные особенности роликовых конвейеров?
- 52) Каков принцип работы и конструктивные особенности шагающих конвейеров?

6.5 Примерная тематика курсовых работ

Тема курсовой работы «Проект подъемно-транспортных машин».

Объектом проектирования студенту предлагается либо мостовой кран, либо транспортирующая машина (конвейер), как представители наиболее широко используемых в металлургическом производстве внутрицеховых транспортных средств.

- В процессе выполнения курсовой работы по расчету подъемнотранспортного оборудования студент решает следующие типовые задачи:
 - выполняет расчет механизма подъема;
 - выполняет расчет механизма передвижения крана;
- производит выбор и описание работы устройств, обеспечивающих безопасность работы подъемно-транспортного оборудования.

7. Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

1. Константинов, В.Ф. Грузоподъемные и транспортирующие машины: учебное пособие для вузов/В.Ф. Константинов — 2-е изд. — Санкт-Петербург: Лань, 2025. —176 с. https://reader.lanbook.com/book/448559?demoKey=eba4e4d186ea1dfa5d663 https://reader.lanbook.com/book/448559?demoKey=eba4e4d186ea1dfa5d663 https://reader.lanbook.com/book/448559?demoKey=eba4e4d186ea1dfa5d663 https://reader.lanbook.com/book/448559?demoKey=eba4e4d186ea1dfa5d663

Дополнительная литература

- 1. Середа, Н.А. Подъемно-транспортные и загрузочные устройства: учебное пособие для вузов / Н. А. Середа. 3-е изд., перераб. и доп. Москва: Издательство Юрайт, 2024. 162 с. URL: https://urait.ru/bcode/543142 (дата обращения: 25.08.2024).
- 2. Герасимов С.В., Долотов А.М., Кулаков Ю.Н.. Краткий справочник для расчета грузоподъемных машин. Братск: ГОУ ВПО «БрГУ», 2009. 103 с. https://brstu.ru/images/stories/section/facultets/mf/midm/metod_razrabotki/1.pdf (дата обращения 25.08.2024 г)

Учебно-методическое обеспечение

- 1. Каменских, С.Ф. Проектирование и расчет ленточного конвейера: учебно-методическое пособие / С. Ф. Каменских, С. С. Осьмушин, В. В. Каржавин. Екатеринбург: Изд-во Рос. гос. проф.-пед. ун-та, 2020. 74 с. URL: http://elar.rsvpu.ru/978-5-8050-0695-2 (дата обращения: 25.08.2024 г.).
- 2. Холодилин, А.Н. Расчет конвейеров: учебное пособие / А.Н. Холодилин; Оренбургский гос. ун т. Оренбург: ОГУ, 2017. 126 с. http://elib.osu.ru/bitstream/123456789/13317/1/32974_20170124.pdf (дата обращения 25.08.2024 г.)

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1 Научная библиотека ДонГТУ <u>library.dstu.education</u>
- 2 Электронная библиотека БГТУ им. Шухова http://ntb.bstu.ru/jirbis2/
- 3 Электронно-библиотечная система «Консультант студента» http://www.studentlibrary.ru/cgi-bin/mb4x
- 4 Электронно-библиотечная система «Университетская библиотека онлайн» http://biblioclub.ru/index.php?page=main_ub_red
- 5 Электронно-библиотечная система IPR BOOKS <u>Сублицензионный</u> договор с ООО "Научно-производственное предприятие "ТЭД КОМПАНИ", http://www.iprbookshop.ru/

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местоположение) учебных кабинетов
"Количество посадочных мест — 38 шт. Доска для написания мелом - 1шт. Компьютер ПК на базе Intel(R) Pentium(R) Gold G6405 CPU @ 4.10GHz - 13 шт. Компьютер Intel Pentium(R)-4 CPU @2.40GHz - 1 шт. Компьютер ПК на базе Intel CeleronCPU @2.40GHz - 2шт.	ауд. <u>222</u> корп. <u>1</u>
Компьютер Intel Pentium(R) Dual-Core CPU E5200 @2.50GHz - 1 шт. Мультимедийный проектор Accer - 1 Web камера - 1 шт. Колонки (комплект) - 1 шт. Рециркулятор - 1 шт. Экран для проектора S`OK CINEMA MOTOSCREEN - 1 шт.	
Количество посадочных мест — 38 шт Доска магнитно-маркерная BRAUBERG стандарт — 1 шт. Смарт панель OLUMIEN диагональ :65 — 1 шт. Компьютеры Intel (T) Core (TH) — 8 шт. МФУ лазерное HP — Laser MFP M443nda — 1 шт.	ауд. 226 корп.1

Лист согласования РПД

Разработал	2)	
Доц. кафедры машин		
металлургического комплекса	(H/	Н.А. Денисова
<u>(должность)</u>	(подпись)	(ФИО)
	•	
n v 1 v	/	
Заведующий кафедрой машин		TT A TT
металлургического комплекса	(nonview)	Н.А. Денисова
	<u>(подпись)</u>	<u>(ФИО)</u>
Протоков № 1		
Протокол №1		
заседания кафедры машин	От 30	оргуулга 2024 год
металлургического комплекса	OT 30	августа 2024 год
П 1		
Декан факультета горно-		
металлургической промышленности и	ONR	0 D 14
строительства	July P	О.В. Князьков
	(подпись	(ФИО)
Согласовано		
Comacobano		
Председатель методической		
комиссии по направлению		
подготовки 15.03.02 Технологические		
1.0		U A Почилова
(«Металлургическое оборудование»)	(подпись)	<u>Н.А. Денисова</u>
	(III)	<u> </u>
Начальник учебно-методического		
центра	Mens	О.А. Коваленко
•	(подпись)	(ФИО)
	•	

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения				
изменений				
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:			
Основ	вание:			
Подпись лица, ответственного за внесение изменений				