МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет	информационных технологий и автоматизации производственных процессов
Кафедра	электроники и радиофизики

УТВЕРЖДАЮ
И.с. проректора по учебной работе
Д.В. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

1 Цели и задачи изучения дисциплины

Твердотельная электроника — направление в электронике, охватывающее изучение физических явлений в твердых телах, лежащих в основе работы приборов, технологии изготовления и применения твердотельных приборов. По конструктивно-технологическим признакам твердотельные приборы подразделяются на дискретные и интегральные. Основным видом твердотельных приборов являются полупроводниковые приборы.

Цели дисциплины: приобретение знаний по физическим основам действия твердотельных приборов, их электрическим характеристикам в статическом и динамическом режимах, реакции приборов на внешние воздействия, представлению приборов в виде электрических моделей и методов экспериментального определения параметров моделей и приборов, а также выработка навыков в совершенствовании и углублении знаний по твердотельным приборам.

Задачи изучения дисциплины: приобретение умений и навыков в расчете параметров твердотельных приборов, умения правильно выбрать прибор для построения электронной схемы с учетом поставленной задачи, обеспечить надежную эксплуатацию прибора с максимальным использованием его возможностей, а также приобретение практических навыков экспериментального определения параметров приборов и моделей.

Дисциплина нацелена на формирование: универсальной компетенции (УК-1), профессиональной компетенции (ПК-1) выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины — дисциплина входит в часть БЛОКА 1, формируемую участниками образовательных отношений основной профессиональной образовательной программы подготовки бакалавров по направлению 11.03.04 Электроника и наноэлектроника (профиль подготовки «Промышленная электроника»).

Дисциплина реализуется кафедрой электроники и радиофизики.

Основывается на базе дисциплин: «Физика», «Высшая математика», «Химия», «Физические основы электроники», «Теоретические основы электротехники».

Является основой для изучения следующих дисциплин: «Схемотехника аналоговых устройств», «Основы силовой преобразовательной техники», «Электронные силовые преобразовательные устройства», «Системы электропитания», «Математическое моделирование в электронике», «Технология производства электронных средств», «Методы и устройства испытаний электронных средств», «Техническая диагностика электронных устройств» приобретенные знания используются при прохождении производственных практик, при подготовке к процедуре защиты и защите ВКР.

Дисциплина «Твердотельная электроника»:

- формирует фундаментальные знания о принципах функционирования приборов и устройств твердотельной электроники, а также областей их применения;
- позволяет изучить физико-технические основы твердотельной электроники, составляющие её научный базис и определяющие принципы действия широкого класса приборов и устройств;
- помогает овладеть навыками проведения измерений, наблюдений и экспериментального исследования характеристик твердотельных приборов, анализа, систематизации и обобщения экспериментальных данных;
- закладывает основы для дальнейшей схемотехнической подготовки инженеров промышленной электроники.

Таким образом, изучение дисциплины «Твердотельная электроника» необходимо для понимания физических процессов, протекающих в твердотельных электронных устройствах, и их практического применения в изделиях электронной техники.

Общая трудоемкость освоения дисциплины для очной формы обучения составляет 5 зачетных единицы, 180 ак.ч. Программой дисциплины предусмотрены лекционные (36 ак.ч.), практические (18 ак.ч.), лабораторные (36 ак.ч.) занятия и самостоятельная работа студента (90 ак.ч.).

Для очно-заочной формы обучения программой дисциплины предусмотрены лекционные (12 ак.ч.), практические (8 ак.ч.), лабораторные (8 ак.ч.) занятия и самостоятельная работа студента (152 ак.ч.).

Для заочной формы обучения программой дисциплины предусмотрены лекционные (6 ак.ч.), практические (4 ак.ч.), лабораторные (4 ак.ч.) занятия и самостоятельная работа студента (166 ак.ч.).

Дисциплина изучается на 2 курсе в 4 семестре для всех форм обучения. Форма промежуточной аттестации – экзамен и дифференцированный зачет.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Твердотельная электроника» направлен на формирование компетенций, представленных в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание компетенции	Код компетенции	Код и наименование индикатора достижения компетенции
Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	УК-1	УК-1.1. Знает: методики поиска, сбора и обработки информации; актуальные российские и зарубежные источники информации в сфере профессиональной деятельности; метод системного анализа УК-1.2. Умеет: применять методики поиска, сбора и обработки информации; осуществлять критический анализ и синтез информации, полученной из разных источников; применять системный подход для решения поставленных задач УК-1.3. Владеет: методами поиска, сбора и обработки, критического анализа и синтеза информации; методикой системного подхода для решения поставленных задач
Способен строить про- стейшие физические и ма- тематические модели при- боров, схем, устройств, установок электроники различного функциональ- ного назначения, электро- технических промышлен- ных устройств и процессов в них, а также использо- вать стандартные про- граммные средства их компьютерного моделиро- вания	ПК-1	ПК-1.1. Умеет строить физические и математические модели приборов, схем, устройств электроники ПК-1.2. Осуществляет физико-математическое описание процессов в электронных устройствах различного функционального назначения ПК-1.3. Владеет навыками работы с программами компьютерного моделирования электронных устройств ПК-1.4. Использует математическое и компьютерное моделирование для улучшения параметров электронных устройств различного функционального назначения

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 5 зачётных единицы, 180 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, выполнение курсового проекта, подготовку к практическим занятиям, текущему контролю, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

	Очная форма обучения		
Вид учебной работы	Всего	ак.ч. по семестрам	
	ак.ч.	4	
Аудиторная работа, в том числе:	90	90	
Лекции (Л)	36	36	
Практические занятия (ПЗ)	18	18	
Лабораторные работы (ЛР)	36	36	
Курсовая работа/курсовой проект	-	-	
Самостоятельная работа студентов (СРС), в том числе:	90	90	
Подготовка к лекциям	8	8	
Подготовка к лабораторным работам	8	8	
Подготовка к практическим занятиям	8	8	
Выполнение курсовой работы / проекта	36	36	
Расчетно-графическая работа (РГР)	-	-	
Реферат (индивидуальное задание)	-	-	
Домашнее задание	-	-	
Подготовка к контрольной работе	6	6	
Аналитический информационный поиск	8	8	
Работа в библиотеке	8	8	
Подготовка к экзамену	6	6	
The Mark Training of Tractaining area (A) with source (T2)	Э (2)	Э(2)	
Промежуточная аттестация – экзамен (Э), диф.зачет (ДЗ)	ДЗ (2)	ДЗ (2)	
Общая трудоемкость дисциплины: ак.ч.	180	180	
3.e.	5	5	

5 Содержание дисциплины

С целью освоения компетенций, приведенных в п.3 дисциплина разбита на 10 тем:

- тема 1 (Цель, задачи, содержание курса. Движение заряженных частиц в электрическом и магнитном полях);
- тема 2 (Термоэлектронная, автоэлектронная и фотоэлектронная эмиссия. Эмиссионные приборы);
- тема 3 (Устройства, основанные на взаимодействии электронного потока с высокочастотными электрическими полями);
- тема 4 (Элементарные процессы в газовых разрядах. Газоразрядные приборы);
- тема 5 (Полупроводниковые диоды. Переходные процессы в диодах.
 Частотные свойства диодов);
- тема 6 (Биполярные транзисторы. Переходные процессы в транзисторах);
- тема 7 (Тиристоры. Структура, основные физические процессы, принцип действия);
 - тема 8 (Униполярные приборы);
- тема 9 (Оптоэлектронные приборы и приборы с объемными эффектами);
 - тема 10 (Микросхемы. Понятие «интегральная схема»).

Виды занятий по дисциплине и распределение аудиторных часов для очной, очно-заочной и заочной формы приведены в таблице 3, 4 и 5 соответственно.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоем- кость в ак.ч.
1	2	3	4	5	6	7	8
1	Цель, задачи, содержание курса. Движение заряженных частиц в электрическом и магнитном полях	Отклонение зарядов электрическим полем. Цилиндрический конденсатор. Кинескоп. Движение зарядов в тормозящем электрическом поле. Движение заряженных частиц в однородном и неоднородном магнитном поле. Отклонение электронного пучка в однородном магнитном поле. Дрейф зарядов в магнитном поле. Дрейф зарядов в магнитном поле. Магнитная ловушка. Магнетрон. Магнитные массспектрометры и масссепараторы	4	Движение заря- женных частиц в электрическом и магнитном полях	2	Определение удельного за- ряда электрона методом маг- нетрона	4
2	Термоэлектронная, автоэлектронная и фотоэлектронная эмиссии. Эмиссионные приборы	Работа выхода. Термоэлектронная эмиссия. Формула Ричардсона-Дешмена. Силы электрического изображения и работы выхода. Эффект Шоттки. Пленочные термокатоды. Полупроводниковые термокатоды. Оксидный термокатод. Электронные лампы. Вольт-амперная характеристика вакуумного диода. Физические основы работы вакуумных триодов, тетродов, пентодов. Термоэлектронный	4	Эмиссионные явления	2	Исследование основных характеристик вакуумных многоэлектродных ламп	4

7

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоем- кость в ак.ч.
1	2	3	4	5	6	7	8
		преобразователь энергии. Автоэлектронная эмиссия. Автоэлектронный проектор. Фотоэлектронная эмиссия. Основные закономерности. Сложные фотокатоды. Фотоэлектронные устройства. Вторичная электронная эмиссия и ее использование в приборах. Фотоэлектронные и вторичные электронные умножители.					
3	Устройства, основанные на взаимодействии электронного потока с высокочастотными электрическими полями	Фазовая фокусировка. Клистрон. Взаимодействие электронного потока с высокочастотными электрическими полями. Замедляющие системы. Взаимодействие электронных потоков с замедленными бегущими электромагнитными волнами. Лампа бегущей волны. Лампа обратной волны.	4	Расчет основных параметров вакуумных приборов	2	Исследование работы фото- электронного умножителя	4
4	Элементарные процессы в газовых разрядах. Газоразрядные приборы.	Основные направления развития вакуумной и плазменной электроники Приборы и устройства газоразрядной и плазменной электроники: неоновые лампы, газотроны, тиратроны, вч-газовые разрядники, ртутные вентили, конструкции,	4	Электрический разряд в газах	2	Исследование работы газоразрядных приборов	4

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоем- кость в ак.ч.
1	2	3	4	5	6	7	8
		характеристики, особенности эксплуатации и области применения.					
5	Полупроводниковые диоды. Переходные процессы диодах. Частотные свойства диодов	Полупроводниковые диоды. Вольт-амперная характеристика (ВАХ) идеального диода. Обратная ВАХ реального диода. Тепловой ток. Ток генерации носителей в переходе. Ток истока. Пробой диода. Прямая ВАХ реального диода. Ток рекомбинации носителей в переходе. Влияние сопротивления базы и электрического поля в базе. Влияние температуры на ВАХ. Тепловой пробой. Тепловое сопротивление. Правила эксплуатации полупроводниковых диодов. Параллельное и последовательное соединение диодов. Переходные процессы в диодах. Емкости диода. Частотные свойства диодов. Переходные процессы при включении, выключении, переключении диода. Переходные процессы при синусоидальном напряжении.	4	Расчет ВАХ полу- проводникового диода	2	Исследование переходных процессов в диодах	4

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоем- кость в ак.ч.
1	2	3	4	5	6	7	8
6	Биполярные тран- зисторы. Пере- ходные процессы в транзисторах.	Структура, режимы работы, схемы включения. Принцип действия. Потоки носителей заряда, составляющие токов. Коэффициент передачи тока эмиттера. Коэффициенты инжекции и переноса. Статичные характеристики, параметры при разных схемах включения. Сравнительная характеристика схем включения. Физические параметры. Транзистор как линейный четырехполюсник, hпараметры. Модели транзистора. Переходные процессы в транзисторе. Частотные характеристики транзистора.	4	Статические характеристики билолярных транзисторов	2	Исследование переходных процессов в биполярных транзисторах	4
7	Тиристоры. Структура, основные физические процессы, принцип действия	Вольт-амперная характеристика. Двухтранзисторная модель. Условие переключения в прямое проводящее состояние. Внутренняя позитивная обратная связь. Диодные и триодные тиристоры. Переходные процессы и импульсные свойства тиристоров. Эффекты du/dt и di/dt в тиристорах. Тиристоры, которые защелкиваются. Симметричные тиристоры. Тири-	4	Статистика носи- телей заряда в ПП	2	Исследование процессов включения и выключения тиристоров	4

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоем- кость в ак.ч.	
1	2	3	4	5	6	7	8	
		сторы, которые проводят в обратном направлении. Параметры и модели тиристоров.						
8	Униполярные приборы	Эффект поля. Униполярные транзисторы с управляющим пр переходом и переходом металл-полупроводник. МДН-транзисторы со встроенным и индуктируемым каналом. Мощные полевые транзисторы. Транзисторы со статичной индукцией.	4	Папачал в паруча	4		Исследование статических характеристик полевых транзисторов	4
9	Оптоэлектронные приборы и приборы ры с объемными эффектами.	Принцип действия и основные характеристики оптоэлектронных приборов: фоторезисторов, фотодиодов, фотоэлементов, фототранзисторов, фототиристоров, светоизлучающие диоды, оптроны. Приборы с объемными эффектами.	2	Переход в равновесном и неравновесном состоянии		Исследование работы фоторе- зистора, фото- диода и фото- транзистора	4	
10	Микросхемы. По- нятие «интеграль- ная схема».	Пленочные, гибридные, полупроводниковые микросхемы. Смежные направления в микроэлектронике.	2			транзистора		
	Всего ау	удиторных часов	36		18		36	

Таблица 4 – Виды занятий по дисциплине и распределение аудиторных часов (очно-заочная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоем- кость в ак.ч.
1	2	3	4	5	6	7	8
1	Цель, задачи, содержание курса. Движение заряженных частиц в электрическом и магнитном полях	Отклонение зарядов электрическим полем. Цилиндрический конденсатор. Кинескоп. Движение зарядов в тормозящем электрическом поле. Движение заряженных частиц в однородном и неоднородном магнитном поле. Отклонение электронного пучка в однородном магнитном поле. Дрейф зарядов в магнитном поле. Дрейф зарядов в магнитном поле. Магнитная ловушка. Магнетрон. Магнитные массспектрометры и масссепараторы	1	Движение заряженных частиц в электрическом и магнитном полях	1	Определение удельного за- ряда электрона методом маг- нетрона	1
2	Термоэлектронная, автоэлектронная и фотоэлектронная эмиссии. Эмиссионные приборы	Работа выхода. Термоэлектронная эмиссия. Формула Ричардсона-Дешмена. Силы электрического изображения и работы выхода. Эффект Шоттки. Пленочные термокатоды. Полупроводниковые термокатоды. Оксидный термокатод. Электронные лампы. Вольт-амперная характеристика вакуумного диода. Физические основы работы вакуумных триодов, тетродов, пентодов. Термоэлектронный	1	Эмиссионные явления	1	Исследование основных характеристик вакуумных многоэлектродных ламп	1

7.1

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоем- кость в ак.ч.
1	2	3	4	5	6	7	8
		преобразователь энергии. Авто- электронная эмиссия. Автоэлек- тронный проектор. Фотоэлек- тронная эмиссия. Основные за- кономерности. Сложные фото- катоды. Фотоэлектронные устройства. Вторичная элек- тронная эмиссия и ее использо- вание в приборах. Фотоэлек- тронные и вторичные электрон- ные умножители.					
3	Устройства, основанные на взаимодействии электронного потока с высокочастотными электрическими полями	Фазовая фокусировка. Клистрон. Взаимодействие электронного потока с высокочастотными электрическими полями. Замедляющие системы. Взаимодействие электронных потоков с замедленными бегущими электромагнитными волнами. Лампа бегущей волны. Лампа обратной волны.	1	Расчет основных параметров вакуумных приборов	1	Исследование работы фото- электронного умножителя	1
4	Элементарные процессы в газовых разрядах. Газоразрядные приборы.	Основные направления развития вакуумной и плазменной электроники Приборы и устройства газоразрядной и плазменной электроники: неоновые лампы, газотроны, тиратроны, тригатроны, ВЧ-газовые разрядники, ртутные вентили, конструкции,	1	Электрический разряд в газах	1	Исследование работы газоразрядных приборов	1

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоем- кость в ак.ч.
1	2	3	4	5	6	7	8
		характеристики, особенности эксплуатации и области применения.					
5	Полупроводниковые диоды. Переходные процессы диодах. Частотные свойства диодов	Полупроводниковые диоды. Вольт-амперная характеристика (ВАХ) идеального диода. Обратная ВАХ реального диода. Тепловой ток. Ток генерации носителей в переходе. Ток истока. Пробой диода. Прямая ВАХ реального диода. Ток рекомбинации носителей в переходе. Влияние сопротивления базы и электрического поля в базе. Влияние температуры на ВАХ. Тепловой пробой. Тепловое сопротивление. Правила эксплуатации полупроводниковых диодов. Параллельное и последовательное соединение диодах. Емкости диода. Частотные свойства диодов. Переходные процессы при включении, выключении, переключении диода. Переходные процессы при синусоидальном напряжении.	2	Расчет ВАХ полу- проводникового диода	1	Исследование переходных процессов в диодах	1

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоем- кость в ак.ч.
1	2	3	4	5	6	7	8
6	Биполярные тран- зисторы. Пере- ходные процессы в транзисторах.	Структура, режимы работы, схемы включения. Принцип действия. Потоки носителей заряда, составляющие токов. Коэффициент передачи тока эмиттера. Коэффициенты инжекции и переноса. Статичные характеристики, параметры при разных схемах включения. Сравнительная характеристика схем включения. Физические параметры. Транзистор как линейный четырехполюсник, hпараметры. Модели транзистора. Переходные процессы в транзисторе. Частотные характеристики транзистора.	2	Статические характеристики билолярных транзисторов	1	Исследование переходных процессов в биполярных транзисторах	1
7	Тиристоры. Структура, основные физические процессы, принцип действия Тиристоры. Внутренняя позитивная обратная связь. Диодные и триодные тиристоры. Переходные процессы и импульсные свойства тиристоров. Эффекты du/dt и di/dt в тиристоры, которые защелкиваются. Симметричные тиристоры. Тири-		1	Статистика носи- телей заряда в ПП	1	Исследование процессов включения и выключения тиристоров	1

№ п/п	темы (пазлела)		Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоем- кость в ак.ч.
1	2	3	4	5	6	7	8
		сторы, которые проводят в обратном направлении. Параметры и модели тиристоров.					
8	Эффект поля. Униполярные транзисторы с управляющим приборы Униполярные приборы Талл-полупроводник. МДН-транзисторы со встроенным и и индуктируемым каналом. Мощные полевые транзисторы. Транзисторы со статичной инлукцией.		Папачал в паруга		Исследование статических характеристик полевых транзисторов	0,5	
9	Оптоэлектронные приборы и приборы ры с объемными эффектами.	Принцип действия и основные характеристики оптоэлектронных приборов: фоторезисторов, фотодиодов, фотоэлементов, фототранзисторов, фототиристоров, светоизлучающие диоды, оптроны. Приборы с объемными эффектами.	1	Переход в равновесном и неравновесном состоянии	1	Исследование работы фоторе- зистора, фото- диода и фото-	0,5
10	Микросхемы. По- нятие «интеграль- ная схема».	Пленочные, гибридные, полупроводниковые микросхемы. Смежные направления в микроэлектронике.	1			транзистора	
	Всего ау	диторных часов	12		8		8

Таблица 5 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоем- кость в ак.ч.
1	2	3	4	5	6	7	8
1	Цель, задачи, содержание курса. Движение заряженных частиц в электрическом и магнитном полях	Отклонение зарядов электрическим полем. Цилиндрический конденсатор. Кинескоп. Движение зарядов в тормозящем электрическом поле. Движение заряженных частиц в однородном и неоднородном магнитном поле. Отклонение электронного пучка в однородном магнитном поле. Дрейф зарядов в магнитном поле. Дрейф зарядов в магнитном поле. Магнитная ловушка. Магнетрон. Магнитные массспектрометры и масссепараторы	0,5	Движение заряженных частиц в электрическом и магнитном полях	0,5	Определение удельного за- ряда электрона методом маг- нетрона	0,25
2	термоэлектронная, автоэлектронная и фотоэлектронная эмиссии. Эмиссионные приборы сепараторы Работа выхода. Термоэлектронная эмиссия. Формула Ричардсона-Дешмена. Силы электрического изображения и работы выхода. Эффект Шоттки. Пленочные термокатоды. Полупроводниковые термокатоды. Оксидный термокатод. Электронные лампы. Вольт-амперная характеристика вакуумного диода. Физические основы работы вакуумных триодов, тетродов, пентодов. Термоэлектронный		0,5	Эмиссионные явления	0,5	Исследование основных характеристик вакуумных многоэлектродных ламп	0,25

№ π/π	Наименование темы (раздела) дисциплины	темы (раздела) Содержание лекционных Ланятий Занятий		Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоем- кость в ак.ч.
1	2	3	4	5	6	7	8
		преобразователь энергии. Авто- электронная эмиссия. Автоэлек- тронный проектор. Фотоэлек- тронная эмиссия. Основные за- кономерности. Сложные фото- катоды. Фотоэлектронные устройства. Вторичная элек- тронная эмиссия и ее использо- вание в приборах. Фотоэлек- тронные и вторичные электрон- ные умножители.					
3	Устройства, основанные на взаимодействии электронного потока с высокочастотными электрическими полями	Фазовая фокусировка. Клистрон. Взаимодействие электронного потока с высокочастотными электрическими полями. Замедляющие системы. Взаимодействие электронных потоков с замедленными бегущими электромагнитными волнами. Лампа бегущей волны. Лампа обратной волны.	0,5	Расчет основных параметров вакуумных приборов	0,5	Исследование работы фото- электронного умножителя	0,5
4	Элементарные процессы в газовых разрядах. Газоразрядные приборы.	Основные направления развития вакуумной и плазменной электроники Приборы и устройства газоразрядной и плазменной электроники: неоновые лампы, газотроны, тиратроны, вч-газовые разрядники, ртутные вентили, конструкции,	0,5	Электрический разряд в газах	0,5	Исследование работы газоразрядных приборов	0,5

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоем- кость в ак.ч.
1	2			5	6	7	8
	характеристики, особенности эксплуатации и области применения.						
5	Полупроводниковые диоды. Переходные процессы в диодах. Частотные свойства диодов	Полупроводниковые диоды. Вольт-амперная характеристика (ВАХ) идеального диода. Обратная ВАХ реального диода. Тепловой ток. Ток генерации носителей в переходе. Ток истока. Пробой диода. Прямая ВАХ реального диода. Ток рекомбинации носителей в переходе. Влияние сопротивления базы и электрического поля в базе. Влияние температуры на ВАХ. Тепловой пробой. Тепловое сопротивление. Правила эксплуатации полупроводниковых диодов. Параллельное и последовательное соединение диодах. Емкости диода. Частотные свойства диодов. Переходные процессы при включении, выключении, переключении диода. Переходные процессы при синусоидальном напряжении.	1	Расчет ВАХ полу- проводникового диода	0,5	Исследование переходных процессов в диодах	0,5

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоем- кость в ак.ч.
1	2	3	4	5	6	7	8
6	Биполярные тран- зисторы. Пере- ходные процессы в транзисторах.	Структура, режимы работы, схемы включения. Принцип действия. Потоки носителей заряда, составляющие токов. Коэффициент передачи тока эмиттера. Коэффициенты инжекции и переноса. Статичные характеристики, параметры при разных схемах включения. Сравнительная характеристика схем включения. Физические параметры. Транзистор как линейный четырехполюсник, hпараметры. Модели транзистора. Переходные процессы в транзисторе. Частотные характеристики транзистора.	1	Статические характеристики билолярных транзисторов	0,5	Исследование переходных процессов в биполярных транзисторах	0,5
7	Тиристоры. Структура, основные физические процессы, принцип действия Тиристоры. Внутренняя позитивная обратная связь. Диодные и триодные тиристоры. Переходные процессы и импульсные свойства тиристоров. Эффекты du/dt и di/dt в тиристорах. Тиристоры, которые защелкиваются. Симметричные тиристоры. Тири-		0,5	Статистика носи- телей заряда в ПП	0,5	Исследование процессов включения и выключения тиристоров	0,5

№ п/п	Наименование темы (раздела) дисциплины Содержание лекционных занятий		Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоем- кость в ак.ч.
1	2	3	4	5	6	7	8
	сторы, которые проводят в обратном направлении. Параметры и модели тиристоров.						
8	Униполярные приборы Униполярные приборы Униполярные приборы Талл-полупроводник. МДН-транзисторы со встроенным индуктируемым каналом. Мощные полевые транзисто Транзисторы со статичной и дукцией.		0,5	Папачал в повуча		Исследование статических характеристик полевых транзисторов	0,5
9	Оптоэлектронные приборы и приборы ры с объемными эффектами.	Принцип действия и основные характеристики оптоэлектронных приборов: фоторезисторов, фотодиодов, фотоэлементов, фототранзисторов, фототиристоров, светоизлучающие диоды, оптроны. Приборы с объемными эффектами.	0,5	Переход в равновесном и неравновесном состоянии	0,5	Исследование работы фоторе- зистора, фото- диода и фото- транзистора	0,5
10	Микросхемы. По- нятие «интеграль- ная схема».	Пленочные, гибридные, полупроводниковые микросхемы. Смежные направления в микроэлектронике.	0,5			гранзистора	
	Всего ау	диторных часов	6		4		4

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/sveden/eduQuality) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
УК-1, ПК-1	Экзамен, дифференцированный зачет	Комплект контролирующих материалов для экзамена, дифференцированного зачета

Критерии оценки знаний студентов.

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- тестирование или устный опрос на коллоквиумах всего 40 баллов;
 - лабораторные работы всего 40 баллов;
 - практические работы всего 20 баллов.

Экзамен проставляется автоматически, если студент набрал по текущей работе не менее 60 баллов и отчитался за все лабораторные работы. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Промежуточный экзамен по дисциплине «Твердотельная электроника» проводится в форме устного экзамена по вопросам, представленным ниже.

Экзаменационные билеты, содержащие два вопроса, составляется таким образом, чтобы каждый вопрос относился к различному модулю. Ответ на каждый вопрос оценивается из 50 баллов.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

В структуру ФОС в форме курсового проекта входят: методические указания, содержащие требования по выполнению курсовой работы, критерии оценивания, перечень необходимых литературных источников и электронных ресурсов.

При оценке уровня выполнения курсового проекта, в соответствии с поставленными целями, проверяются следующие знания, умения и навыки:

- знание компонентов дисциплины, использованных при выполнении курсового проекта;
- умение: работать с научной и энциклопедической литературой, справочниками и электронными ресурсами; накапливать и группировать материал; последовательно и грамотно излагать мысли и оформлять выводы; придерживаться формы научного исследования;
 - владение современными средствами компьютерных технологий;
- способность самостоятельно создать содержательную презентацию по теме подготовленной курсовой работы.

Следовательно, курсовые проекты, как компонент фонда оценочных средств по дисциплине «Твердотельная электроника», формирование оценить студентов знаниевую позволяют y составляющую, определенные экспериментальные умения и ведение информационного поиска, навыки исследовательской деятельности, самостоятельной работы и опыта публичных выступлений.

 Сумма баллов за все виды учебной деятельности
 Оценка по национальной шкале зачёт/экзамен

 0-59
 Не зачтено/неудовлетворительно б0-73

 3ачтено/удовлетворительно 74-89
 Зачтено/хорошо 3ачтено/отлично

Таблица 6 – Шкала оценивания знаний

6.2 Домашнее задание

В качестве домашнего задания обучающиеся выполняют проработку лекционного материала.

6.3 Темы для рефератов (презентаций) – индивидуальное задание

- 1) Электровакуумные фотоэлектронные приборы. Фотоэлектронный умножитель. Электронно-оптический преобразователь.
- 2) Электростатические отклоняющие системы. Магнитные отклоняющие системы.
- 3) Электростатическая фокусировка электронного потока. Электронные линзы. Электростатические фокусирующие системы. Принципы магнитной фокусировки электронного потока. Магнитные фокусирующие системы.
- 4) Вторичная электронная эмиссия. Автоэлектронная (электростатическая) эмиссия.
- 5) Энергетическое взаимодействие электромагнитного поля с заряженными частицами.
- 6) Электронные приборы СВЧ: клистроны, лампы бегущей, лампы обратной волны.
 - 7) Магнетроны и магнетронные усилители.
 - 8) Электронные мазеры и лазеры.

- 9) Принцип действия, устройство и характеристики многорезонаторного пролетного клистрона.
- 10) Несамостоятельная проводимость газов. Условия самостоятельного разряда в газах.
 - 11) Тлеющий разряд. Дуговой разряд. Ионные приборы
 - 12) Колебания и волны в плазме, явления переноса в плазме.
 - 13) Электронно-лучевая трубка.
- 14) Эмиссия электронов из металла. Функция распределения Ферми-Дирака. Плотность тока при термической эмиссии. Формула Ричардсона-Дэшмана.
 - 15) Этапы развития микроэлектроники.
- 16) Процессы образования и уничтожения свободных носителей в беспримесных полупроводниках. Концентрация носителей и их зависимость от температуры для основных полупроводниковых материалов.
- 17) Легирование полупроводниковых материалов. Донорные и акцепторные полупроводники. Донорные и акцепторные уровни в примесных полупроводниках . Примесная проводимость.
 - 18) Дрейфовые и диффузионные токи в полупроводниках.
 - 19) Контакт металл-полупроводник.
- 20) Контакт полупроводников с разным типом проводимости. Образование p-n-перехода.
 - 21) Переход в равновесном состоянии.
 - 22) Инжекция и экстракция неосновных носителей заряда.
- 23) Барьерная и диффузионная емкости перехода. Их влияние на частотные свойства диодов.
- 24) Эффект поля в полупроводниках. Эффекты обогащения, обеднения и инверсии знака заряда.
 - 25) Переходные процессы в диодах.

Оптоэлектронная аппаратура в современной микроэлектронике.

6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Примеры тестовых заданий коллоквиумов:

- 1. Подвижность носителей заряда в сильных электрических полях:
- а) не изменяется;
- б) возрастает;
- в) уменьшается.
- 2. Как изменяется высота потенциального барьера p-n перехода с увеличением температуры?
 - а) не изменяется;
 - б) увеличивается;
 - в) уменьшается.

- 3. Какая составляющая тока преобладает при прямом смещении p-n перехода?
 - а) тепловая;
 - б) рекомбинационная;
 - в) диффузионная.
- 4. Как изменяется ширина области объемного заряда резкого и плавного p-n переходов при увеличении обратного напряжения?
 - а) не изменяется;
 - б) уменьшается;
 - в) возрастает.
- 5. Как процессы накопления и рассасывания неосновных носителей заряда в базе диода, а также барьерная емкость влияют на его быстродействие?
 - а) уменьшают;
 - б) увеличивают;
 - в) не влияют.
- 6. Как влияет сопротивление базовой области диода на прямое падение напряжения диода?
 - а) не влияет;
 - б) увеличивает;
 - в) уменьшает.
- 7. В какой схеме включения транзисторов достигается наибольшее усиление тока?
 - а) ОБ;
 - б) ОЭ;
 - в) одинаковое.
- 8. При каких напряжениях на переходах обеспечивается активный режим работы *n-p-n* транзистора в схеме с ОБ?
 - a) $U_{36} > 0$; $U_{K6} > 0$;
 - 6) $U_{3b} \to 0$; $U_{Kb} < 0$;
 - в) $U_{35} < 0$; $U_{K5} > 0$.
- 9. Тиристор это полупроводниковый прибор, имеющий три (или более) выпрямляющих перехода, предназначенный для использования в схемах:
 - а) усиления;
 - б) стабилизации;
 - в) переключения.

- 10. Почему спектральная характеристика фоторезистора имеет спад при малых длинах волн излучения?
 - а) из-за увеличения поглощения света вблизи поверхности
- б) из-за усиления поверхностной рекомбинации неравновесных носителей;
 - в) по двум указанным причинам.
- 11. Как изменяется высота потенциального барьера p-n перехода с увеличением концентрации примесей?
 - а) не изменяется;
 - б) увеличивается;
 - в) уменьшается.
- 12. Электропроводность полупроводника обусловлена донорными и акцепторными примесями с одинаковой концентрацией. Полупроводник называют:
 - а) вырожденным;
 - б) скомпенсированным;
 - в) собственным
- 13. Какая составляющая тока преобладает в широкозонных полупроводниках при обратном смещении p-n — перехода?
 - а) генерационная;
 - б) рекомбинационная;
 - в) диффузионная.
- 14. При прямом смещении p-n перехода направление внешнего поля и поля контактной разности потенциалов...
 - а) совпадают;
 - б) противоположны;
 - в) не имеет значения.
 - 15. Какой вид пробоя преобладает в кремниевых p-n переходах?
 - а) тепловой;
 - б) лавинный;
 - в) туннельный.
 - 16. Какой вид емкости p-n перехода используется в варикапах?
 - а) диффузионная;
 - б) барьерная;
 - в) емкость корпуса.

- 17. В каком режиме работы биполярного транзистора происходит усиление электрических сигналов?
 - а) активном;
 - б) насыщения;
 - в) отсечки.
- 18. На какой частоте модуль коэффициента передачи тока транзистора уменьшается в $\sqrt{2}$ раз по сравнению с его значением на низких частотах?
 - а) граничная частота f_t ;
 - б) предельная частота $f_{\rm h\,21}$;
 - в) максимальная частота генерации $f_{\rm max}$.
- 19. МДП- транзистор с встроенным каналом в схемах усиления чаще используется:
 - а) в режиме обеднения;
 - б) в режиме обогащения;
 - в) в обоих режимах.
- 20. При каком способе выключения диодного тиристора достигается меньшее время выключения?
 - а) при отключении цепи питания;
 - б) при изменении полярности анодного напряжения;
 - в) при коротком замыкании тиристора.
- 21. При каких условиях в полупроводнике протекает диффузионный ток?
 - а) при наличии градиента концентрации носителей;
 - б) при существовании электрического поля;
 - в) при повышении температуры.
- 22. Как зависит подвижность носителей заряда в полупроводниках с ростом температуры?
 - а) увеличивается;
 - б) уменьшается;
 - в) увеличивается и уменьшается при наличии примесей.
- 23. Как влияет увеличение ширины запрещенной зоны полупроводника на контактную разность потенциалов p-n перехода?
 - а) не влияет;
 - б) возрастает;
 - в) уменьшается.

- 24. Как изменится напряжение лавинного пробоя диода при увеличении температуры?
 - а) не изменится;
 - б) возрастет;
 - в) уменьшится.
- 25. Чтобы увеличить эффективность эмиттера нужно отношение концентрации примесей в эмиттере к концентрации примеси в базе:
 - а) уменьшить;
 - б) увеличить;
 - в) оставить без изменения.
- 26. В какой схеме включения транзистора самое низкое входное сопротивление?
 - А) с общим эмиттером;
 - б) с общей базой;
 - в) с общим коллектором.
 - 27. Наиболее важной особенностью полевого транзистора является
 - а) повышенное быстродействие;
 - б) лучшие усилительные свойства;
 - в) большое входное сопротивление.
- 28. Что характеризует наклонный участок логарифмической зависимости электропроводности полупроводника при высоких температурах?
 - а) изменение удельной проводимости;
 - б) ширину запрещенной зоны полупроводника;
 - в) изменение концентрации примеси.
- 29. Пробивное напряжение диода увеличивается с ростом температуры, если пробой носит характер.
 - а) лавинный;
 - б) туннельный;
 - в) тепловой.
- 30. В каких схемах включения транзисторов лучше частотные и переключающие свойства?
 - а) с ОБ;
 - б) с ОЭ;
 - в) с ОК.

- 31. Какие режимы работы транзисторов являются основными в схемах транзисторных ключей?
 - а) активный;
 - б) насыщения;
 - в) отсечки.
- 32. С возрастанием температуры уровень Ферми в полупроводниках смещается...
 - а) к краю валентной зоны;
 - б) к середине запрещенной зоны;
 - в) к краю зоны проводимости.
- 33. Почему транзисторы с диодом Шоттки в цепи коллектор-база характеризуются повышенным быстродействием?
 - а) отсутствует инжекция в коллекторном переходе;
 - б) уменьшается барьерная емкость коллектора;
 - в) уменьшается время рассасывания.
- 34. Какие структуры диодов: сплавные, диффузионные, эпитаксиально-планарные широко используются в микроэлектронике?
 - а) сплавные;
 - б) эпитаксиально-планарные;
 - в) диффузионные.
- 35. Как влияет увеличение температуры на прямой и обратный токи диода?
 - а) токи уменьшаются;
 - б) токи возрастают;
 - в) прямой ток растет, а обратный ток уменьшается.
 - 36. С увеличением уровня легирования напряжение лавинного пробоя...
 - а) уменьшается;
 - б) увеличивается;
 - в) не изменяется.
- 37. Какая из составляющих обратного тока преобладает в кремниевых диодах?
 - а) ток насыщения;
 - б) ток экстракции;
 - в) ток генерации.

- 38. Назовите отличительные особенности обращенных диодов в сравнении с обычными выпрямительными диодами.
 - а) отсутствует накопление заряда неосновных носителей;
 - б) низкое быстродействие;
- в) при обратном напряжении диод проводит ток, при прямом не проводит.
- 39. При переключении тиристора из выключенного состояния во включенное и обратно, время выключения...времени включения.
 - а) больше;
 - б) меньше;
 - в) равны.
- 40. Тиристор это полупроводниковый прибор, имеющий три (или более) выпрямляющих перехода, предназначенный для использования в схемах:
 - а) усиления;
 - б) стабилизации;
 - в) переключения.
- 41. Как можно осуществить электрическое включение диодного тиристора?
 - а) плавным увеличением анодного напряжения;
 - б) быстрым увеличением анодного напряжения;
 - в) тем и другим способом.
- 42. Какую разновидность транзисторов относят к транзисторам обедненного типа?
 - а) транзисторы с индуцированным каналом;
 - б) транзисторы с р-п-переходом;
 - в) транзисторы с встроенным каналом.
- 43. Какая схема включения полевого транзистора используется чаще с общим истоком (ОИ), с общим стоком (ОС) или с общим затвором (ОЗ)?
 - a) OИ;
 - б) О3;
 - B) OC.
- 44. МДП- транзистор с встроенным каналом в схемах усиления чаще используется:
 - а) в режиме обеднения;
 - б) в режиме обогащения;
 - в) в обоих режимах.

- 45. Почему характеристики полевых транзисторов описываются уравнениями, в которых токи являются функциями напряжений, а не наоборот?
 - а) из-за низкого уровня шумов;
 - б) из-за высокой крутизны;
 - в) из-за высокого входного сопротивления.
- 46. Почему в полевом транзисторе с управляющим переходом ток стока растет с увеличением напряжения на стоке?
 - а) из-за усиления по току;
 - б) из-за увеличения концентрации носителей заряда;
- в) длина и сопротивление канала зависят от напряжения на стоке в степени < 1.
- 47. Транзисторы IGBT предназначены для использования в схемах:
 - а) усиления;
 - б) генерации;
 - в) переключения.
- 48. Спектральная характеристика фоторезистора имеет спад при малых длинах волн излучения...
 - а) из-за увеличения поглощения света вблизи поверхности;
- б) из-за усиления поверхностной рекомбинации неравновесных носителей;
 - в) по двум указанным причинам.
- 49. Почему световая характеристика фоторезистора носит сублинейный характер?
 - а) усиливается поглощение света;
 - б) возрастает отражение;
 - в) уменьшается время жизни носителей и подвижность.
- 50. Какие из фотоприемников могут использоваться для генерации электрической энергии при поглощении света: фоторезистор; фотоэлемент; фотодиод?
 - а) фоторезистор;
 - б) фотодиод;
 - в) фотоэлемент.

6.5 Вопросы для подготовки к экзамену (тестовому коллоквиуму)

- 1. Опишите законы движения заряженных частиц в статических электрических и магнитных полях.
- 2. Поясните, что такое дрейф заряженных частиц в магнитном поле.
 - 3. Что такое градиентный дрейф заряженных частиц?
- 4. Перечислите основные типы электростатических линз. Что такое магнитные линзы?
- 5. Что представляют собой электронные микроскопы? Общие принципы работы.
 - 6. Какие конструкции электронных микроскопов вам известны?
- 7. Что такое поперечные эффекты? Поясните, что означает разбухание пучков заряженных частиц.
- 8. Поясните, что такое магнитные масс-спектрометры и масс-сепараторы.
- 9. Поясните, что представляют собой источники СВЧ-излучения, основанные на вынужденном излучении потоков заряженных частиц: лампа бегущей волны (ЛБВ), магнетроны.
- 10. Что такое пространственная и энергетическая группировки потоков частиц.
- 11. Как осуществляется взаимодействие электронного потока с высокочастотными электрическими полями?
- 12. Что такое замедляющие системы? Каково взаимодействие электронных потоков с замедленными бегущими электромагнитными волнами? Что такое лампа бегущей волны?
- 13. Поясните, что такое термоэлектронная эмиссия. Приведите и поясните формулу Ричардсона-Дешмена. Поясните понятие работы выхода.
- 14. Что представляют собой электронные лампы? Приведите вольт-амперную характеристику вакуумного диода. Каковы физические основы работы вакуумных триодов, тетродов, пентодов?
- 15. Что представляют собой фотоэлектронная эмиссия? Какие фотоэлектронные устройства Вам известны?
- 16. Что представляют собой фотоэлектронные и вторичные электронные умножители?
- 17. Что представляет собой автоэлектронная эмиссия? Что такое автоэлектронный проектор?
 - 18. Что представляет собой эмиссия под воздействием частиц?
 - 19. Опишите элементарные процессы в газовых разрядах.
 - 20. Какие газоразрядные приборы Вам известны?
- 21. Что представляют собой выпрямительные диоды, каково их назначение и основные параметры?

- 22. Что представляют собой импульсные диоды, каково их назначение и основные параметры?
- 23. Что представляют собой стабилитроны, каково их назначение и основные параметры?
- 24. Что представляют собой диоды Шоттки и какова их область применения?
- 25. Приведите и поясните прямые вольтамперные характеристики диодов Шоттки в области малых и больших токов.
 - 26. Каким образом можно провести моделирование диодов?
- 27. Поясните устройство и принцип действия биполярного транзистора.
- 28. Что представляет собой транзисторная структура в отсутствие внешних напряжений.
- 29. Что представляет собой транзисторная структура при наличии внешних напряжений.
- 30. Перечислите составляющие токов транзистора, включённого с общей базой при работе в активном режиме.
- 31. Что представляют собой коэффициенты инжекции, переноса, передачи тока эмиттера.
- 32. Приведите и поясните статические вольтамперные характеристики транзистора, включённого по схеме с общей базой.
- 33. Приведите и поясните статические вольтамперные характеристики транзистора, включенного по схеме с общим эмиттером.
- 37. Приведите и поясните сравнительные характеристики схем включения биполярного транзистора.
- 38. Каково влияние температуры на характеристики и параметры биполярных транзисторов?
- 39. Что представляют собой коэффициенты передачи тока транзисторов для различных схем включения?
- 40. В чем заключается явление модуляции базы и его влияние на характеристики транзистора?
 - 41. Дайте понятие транзистора, как усилителя малого сигнала.
- 42. Приведите и поясните схему замещения транзистора в физических параметрах.
- 43. Дайте понятие транзистора как активного четырёхполюсника, перечислите h параметры транзистора.
 - 44. Поясните работу транзистора на высоких частотах.
 - 45. Поясните работу транзистора в импульсном режиме.
 - 46. Перечислите разновидности транзисторов и их параметры.
- 47. Поясните понятие предельных режимов работы биполярных транзисторов.

- 48. Приведите классификацию и основные особенности полевых транзисторов.
- 49. Приведите общую характеристику и особенности конструкции транзисторов с управляющим *p-n* переходом.
- 50. Поясните принцип работы транзистора с управляющим p-n переходом и горизонтальным каналом.
- 51. Приведите и поясните стоко-затворные характеристики транзистора с управляющим p-n переходом и горизонтальным каналом.
- 52. Приведите и поясните выходные (стоковые) характеристики транзистора с управляющим *p-n* переходом и горизонтальным каналом.
- 53. В чем заключаются технологические особенности изготовления конструкции транзисторов с управляющим *p-n* переходом?
- 54. Перечислите основные параметры и режимы эксплуатации транзисторов с управляющим *p-n* переходом.
- 55. Приведите типичную структуру и выходные вольтамперные характеристики транзисторов со статической индукцией.
- 56. Поясните принцип работы и основные характеристики транзистора с собственным каналом. Опишите режимы работы.
- 57. Поясните принцип работы и основные характеристики транзистора с индуцированным каналом.
- 58. Поясните параметры и характеристики МДП-транзисторов в усилительном режиме.
- 59. Поясните параметры и характеристики МДП-транзисторов в ключевом режиме.
- 60. Дайте сравнительную характеристику полевых и биполярных транзисторов.
- 61. Дайте общую характеристику и перечислите разновидности четырёхслойных полупроводниковых приборов.
- 62. Какие физические процессы протекают в тиристоре при подключении его в прямом направлении?
- 63. Какие физические процессы протекают в тиристоре при под-ключении его в обратном направлении?
 - 64. Приведите и поясните вольт-амперную характеристику тиристора.
- 65. Приведите и поясните переходный процесс включения тиристора током управления.
- 66. Приведите и поясните переходный процесс включения тиристора по аноду (эффект du/dt).
- 67. Приведите и поясните переходный процесс выключения тиристора.
- 68. Приведите структуру и поясните принцип действия симметричного тиристора.

- 69. Приведите и поясните вольт-амперные характеристики и особенности применения симисторов.
- 70. Что представляют собой излучающие диоды и их характеристики?
- 71. Что представляют собой фотоприёмные полупроводниковые приборы и какова их характеристика? Что представляют собой оптопары?

6.6 Примерная тематика курсовых проектов

Тема курсовой работы: «Свойства полупроводников, расчет основных параметров и характеристик p-п– перехода».

Курсовая работа должна состоять из:

- 1. Титульного листа;
- 2. Оглавления;
- 3. Введения;
- 4. Расчетной части;
- 5. Выводов (и рекомендаций);
- 6. Списка литературы, приложений.

В рамках курсового проекта необходимо произвести расчет физических параметров р- и п-областей:

- расчёт эффективных плотностей состояний для зоны проводимости и валентной зоны;
 - расчёт собственной концентрации носителей заряда;
 - расчёт положения уровня Ферми;
- расчёт температурной зависимости положения уровня Ферми $E_{f}(T)$ в донорном полупроводнике;
 - расчет концентрации основных и неосновных носителей заряда;
 - расчет удельных электропроводностей р- и n-областей;
 - расчет коэффициентов диффузии электронов и дырок;
 - расчет диффузионных длин электронов и дырок.

Также необходимо провести расчет параметров р-п-перехода:

- расчет величины равновесного потенциального барьера;
- расчет контактной разности потенциалов;
- расчет ширины ОПЗ;
- расчет барьерной ёмкости при нулевом смещении;
- расчет обратного тока перехода;
- построение графика ВФХ;
- построение графика ВАХ.

Варианты задания приведены в таблице 7.

Таблица 7 – Варианты задания на курсовой проект

Тиолици	таолица / – Варианты задания на курсовои проект					
		И	сходные дан	ные		
Материал полупро- водника	Si	Ge	GaAs	InSb	Si	Ge
Отн. диэл. прониц. (ε)	11,7	16,3	11,1	17,72	11,72	16,3
Концентра- ция леги- рующих примесей	$N_A=8,7\cdot10^{16} \text{m}^{-3}, N_{\text{Д}}=1,7\cdot10^{19} \text{m}^{-3}$	N_A =4,7·10 ¹⁶ M^{-3} , $N_{\text{Д}}$ =2,7·10 ²⁰ M^{-3}	$N_A=1,4\cdot10^{17}\text{m}^{-3},$ $N_{\text{Д}}=2,6\cdot10^{19}\text{m}^{-3}$	$N_A = 0.7 \cdot 10^{17} \text{M}^{-3},$ $N_{\perp} = 5.87 \cdot 10^{19} \text{M}^{-3}$	$N_A = 0.7 \cdot 10^{17}$ M^{-3} , $N_{\perp} = 5.87 \cdot 10^{19}$ M M^{-3}	$N_A=8,7\cdot10^{16} \text{m}^{-3}, N_{\text{Д}}=1,7\cdot10^{19} \text{m}^{-3}$
Тип р- пперехода	резкий и несимметрич- ный	резкий и несим- метричный	резкий и несимметрич- ный	резкий и несим- метричный	резкий и несиммет- ричный	резкий и несим- метричный
Тепловой обратный ток ($I_{\scriptscriptstyle 0}$)	0,2мкА	0,25мкА	0,17 мкА	0,20мкА	0,17 мкА	0,2мкА
Барьерная $\stackrel{E}{E}$ викость (C_{δ_0})	1,5 nΦ	2 nΦ	1,6 nΦ	1,5 nΦ	1,5 nΦ	1,0 nΦ
Площадь поперечно- (S)	1,8 _{MM} ²	1,2мм ²	2,2 _{MM} ²	2,2 _{MM} ²	1,2 _{MM} ²	2,8мм ²
Ширина запрещен- ной зоны, $_{9}B$	1,12 əB	0,74 _P B	1,43 эВ	0,20 _P B	1,120 эВ	0,74 эB
Подвиж- ность ды- рок при 300K, $cm^2/B \cdot c$	$\mu_{p} = 600$	$\mu_{p=1900}$	$\mu_{\mathrm{p}} = 400$	$\mu_{p=5000}$	$\mu_{p} = 1500$	$\mu_{p=1600}$
Подвиж- ность элек- тронов при 300K, см ² /В·с	μ _{n=1500}	μ _n =3900	μ _n =8500	μ _{n=78000}	μ _{n=780}	μ _{n=3500}
Эффектив- ная масса электрона	$m_n = 1,08 m_0$	$m_n = 0.56 m_0$	$m_n = 0.068 m_0$	m _n =0,013m ₀	m _n =0,96m ₀	$m_n = 1,08 m_0$
Эффектив- ная масса дырки	m _p =0,567m ₀	$m_p = 0.35 m_0$	$m_p = 0.45 m_0$	$m_p = 0.60 m_0$	m _p =0,612m ₀	m _p =0,567m ₀
Температу- ра окружа- ющей сре- ды	300 ⁰ К (примесь ионизирована)	300°К (примесь ионизирована)	300 ⁰ К (примесь ионизирована)	300°К (примесь ионизирована)	300°К (примесь ионизирована)	300 ⁰ К (примесь ионизирована)
Электриче- ская посто- янная	$8,85 \times 10^{-12} \Phi/M$	$8,85 \times 10^{-12} \Phi/M$	$8,85 \times 10^{-12} \Phi/M$	$8,85 \times 10^{-12} \Phi/M$	$8,85 \times 10^{-12}$ Φ/M	$8,85 \times 10^{-12} \Phi/_{\mathrm{M}}$
Время жиз- ни электро- на	$\tau_{n}=2,5\cdot10^{-3}c$	$\tau_{n}=1,2\cdot 10^{-3}c$	$\tau_n = 1.5 \cdot 10^{-3} c$	$\tau_{n}=1,4\cdot10^{-3}c$	$\tau_{n}=1,4\cdot 10^{-3}c$	$\tau_{\rm n}=2,5\cdot 10^{-3}{\rm c}$
Время жиз- ни дырки	$\tau_{p}=10^{-3}c$	$\tau_p = 1,410^{-3}c$	$\tau_p = 0.87 \cdot 10^{-3} c$	$\tau_p = 1,4 \cdot 10^{-3} c$	$\tau_p = 1,4 \cdot 10^{-3} c$	$\tau_p = 10^{-3} c$

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Сычик, В. А. Твердотельная электроника: учебно-методическое пособие для студентов специальности 1-41 01 01 «Технология материалов и компонентов электронной техники». Минск: БИТУ, 2021. 346 с. 448 с. URL:
- https://fileskachat.com/download/116647_16bfeeb8130ca764df4930479ee707ef.html (дата обращения: 30.08.2024).
- 2. Пасынков, В.В. Полупроводниковые приборы: учебное пособие / В.В. Пасынков, Л.К. Чиркин. 2-е изд., стер. Санкт-Петербург; Лань, 2022. 480 с. URL: https://vk.com/wall-206723877_6163 (дата обращения: 30.08.2024).

Дополнительная литература

- 1. Захаров, А.Г. Физика. Введение в твердотельную электронику: учебное пособие / А.Г. Захаров; Южный федеральный университет. Ростовна-Дону; Таганрог: Издательство Южного федерального университета, 2017. 125 с. URL: https://inep.sfedu.ru/wp-content/uploads/2015/04/24/Физика-Введение-в-твердотельную-электронику.pdf (дата обращения: 30.08.2024).
- 2. Росадо, Л. Физическая электроника и микроэлектроника / Л. Росадо. М.: Высшая школа, 2005. 308 с.
- 3. Епифанов, Г.И. Твердотельная электроника: учеб. для студ. вузов / Г.И. Епифанов, Ю.А. Мома. М.: Высш. шк., 1986. 304 с. URL:

https://djvu.online/file/na6hswUwTgLnv (дата обращения: 30.08.2024).

- 4. Жихарев, А.А. Электронно-лучевые и фотоэлектронные приборы /Г.Г. Шамаева. М: Высшая школа, 1982. 463с.
- 5. Полупроводниковая электроника /[редкол.: Д.В. Чепур и др.]. Ужгород: Ужгородский гос. ун-т, 1971. 206 с.: ил.
- 6.Тугов, Н.М. Полупроводниковые приборы /Б.А. Глебов, Н.А. Чарыков. Энергоатомиздат, 1990. 576 с.
- 7. Пасынков, В.В. Материалы электронной техники: учебник /В.В. Пасынков, В.С. Сорокин. 3-е изд. -СПб.: Лань, 2001. 368с.: ил.
- 8. Иванов, В.И. Полупроводниковые оптоэлектронные приборы: справочник /В.И. Иванов, А.И. Аксенов, А.М. Юшин. 2-е изд., перераб. и доп. М.: Энергоатомиздат, 1988. 448 с.

Учебно-методическое обеспечение

1. Методические указания к лабораторным работам по дисциплине «Физика электронных и полупроводниковых приборов» : 2 курса всех форм обучения)» (для студ. напр. подг. 13.03.02 «Электроэнергетика и электротехника», проф. «Системы силовой электроники в электротехнологиях» и 11.03.03 «Конструирование и технология электронных средств», проф. «Компьютерное проектирование систем силовой электроники» / сост. Р.Р. Пепенин ; Каф. Радиофизики . – Алчевск : ЛНР ДонГТИ, 2022. 73 c. URL: https://library.dontu.ru/download.php?rec=131288 (дата обращения: 30.08.2024).

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ : официальный сайт. Алчевск. URL: <u>library.dstu.education.</u> Текст : электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст : электронный.
- 3. Консультант студента : электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст : электронный.
- 4. Университетская библиотека онлайн : электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст : электронный.
- 5. IPR BOOKS : электронно-библиотечная система. Красногорск. — URL: http://www.iprbookshop.ru/. — Текст : электронный.
- 6. Федеральная служба по экологическому, технологическому и атомному надзору (Ростехнадзор): официальный сайт. Москва. https://www.gosnadzor.ru/. Текст : электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО. Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

таолица т тугатериально техни неское обесне тение	
Наименование оборудованных учебных кабинетов	Адрес (местоположение) учебных кабинетов
Специальные помещения: Мультимедийная лекционная аудитория (48 посадочных мест), оборудованная специализированной (учебной) мебелью, проектор EPSON EMP-X5 (1 шт.); домашний кинотеатр HT-475 (1 шт.); персональный компьютер, локальная сеть с выходом в Internet	ауд. <u>206</u> корп. <u>3</u>
Аудитории для проведения практических занятий, для самостоятельной работы: Компьютерный класс (11 посадочных мест) для групповых и индивидуальных консультаций, организации самостоятельной работы, оборудованный учебной мебелью, компьютерами с неограниченным доступом к сети Интернет, включая доступ к ЭБС, доской маркерной магнитной	ауд. <u>207</u> корп. <u>3</u>
Лаборатория электронных устройств и аналоговой схемотехники (25 посадочных мест) для проведения лабораторных и практических занятий, для групповых и индивидуальных консультаций, для проведения курсового проектирования (выполнения курсовых работ), организации самостоятельной работы, в том числе, научно-исследовательской, оборудованная учебной мебелью, доской для написания мелом − 1 шт., учебно-лабораторными стендами «ОРАМ» − 3 шт., генераторами ГЗ-36A − 4 шт., осциллографами С1-83 − 4 шт., источниками питания универсальными − 2 шт., учебно-лабораторными стендами «EV8031/AVRLCD» − 3 шт., частотомерами − 5 шт., вольтметрами цифровыми − 5 шт., вольтметрами универсальными В7-16A − 3 шт., приборами Л2-22/1 − 5 шт., приборами Л2-43 − 1 шт., приборами Л2-42 − 1 шт., приборами Е4-7 − 1 шт., приборами Л2-60 − 1 шт., приборами В8-8 − 1 шт., приборами Е7-12 − 1 шт., ваттметрами Д5007 − 2 шт.	ауд. <u>213</u> корп. <u>3</u>
Лаборатория вакуумной и полупроводниковой электроники (18 посадочных мест) для проведения лабораторных и практических занятий, для групповых и индивидуальных консультаций, для проведения курсового проектирования (выполнения курсовых работ), организации самостоятельной работы, в том числе, научно-исследовательской, оборудованная учебной мебелью, стендами для изучения полупроводниковой и вакуумной электроники − 7 шт., лабораторными установками − 3 шт., вольтметрами В7-35 − 16 шт., генераторами Г3-118 − 8 шт., Генераторами Г3-112 − 2 шт., осциллографами С1-76 − 6 шт., осциллографами С1-83 − 2 шт., осциллографами С1-93 − 1 шт., приборами для исследования АЧХ − 1 шт., приборами X1-46 − 1 шт., частотомерами Ч3-34 − 4 шт., блоками питания постоянного тока Б5-49 − 1 шт., приборами X1-50 − 1 шт., столами монтажными − 7 шт.	ауд. 106_ корп. 4

Лист согласования РПД

Разработали:

<u>Старший преподаватель кафедры</u> электроники и радиофизики

(должность

В.И. Ушаков Ф.И.О.)

Старший преподаватель кафедры электроники и радиофизики

(должность)

<u>О.В. Бакаев</u> Ф.И.О.)

И.о. заведующего кафедрой электроники и радиофизики

Маши

(подлись

<u> А.М. Афанасьев</u> Ф.И.О.)

Протокол № 1 заседания кафедры электроники и радиофизики

от __30.08.2024 г._

И.о. декана факультета информационных технологий и автоматизации производственных процессов

(подпись

В.В. <u>Дьячкова</u> Ф.И.О.)

Согласовано

Председатель методической комиссии по направлению подготовки 11.03.04 Электроника и наноэлектроника (профиль «Промышленная электроника»)

А.М. Афанасьев

Начальник учебно-методического центра

(подпись

О.А. Коваленко

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения изменений				
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:			
Основание:				
Подпись лица, ответствен	нного за внесение изменений			