Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Вишневский Дмитрий Александрович

Должность: Ректор

Дата подписания: 30.04.2025 11:55:50

Уникальный программный ключ: МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБРНАУКИ РОССИИ)

03474917c4d012283e5ad996a48a5e70bf8da057

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет горно-металлургической промышленности и строительства Кафедра горных энергомеханических систем **УТВЕРЖДАЮ** проректора по работе Д.В. Мулов РАБОЧАЯ ПРОГРАММА ДИСТИНАННЫ Термодинамика (наименование дисциплины) 13.03.03 Энергетическое машиностроение (код, наименование направления подготовки) Автоматизированные гидравлические и пневматические системы и агрегаты (образовательная программа) Квалификация бакалавр (бакалавр/специалист/магистр) Форма обучения очная

(очная, очно-заочная, заочная)

1 Цели и задачи изучения дисциплины

Цели дисциплины. Целью освоения дисциплины является формирование системы знаний по термодинамике.

Задачи изучения дисциплины:

- изучение сущности термодинамических процессов;
- овладение методиками использования современных технологий для анализа и применения закономерностей термодинамических процессов.

Дисциплина нацелена на формирование

общепрофессиональных (ОПК-4) компетенций выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины – курс входит в обязательную часть Блока 1.

Дисциплина реализуется кафедрой горных энергомеханических систем. Основывается на базе дисциплин: «Математика», «Физика».

Является основой для изучения следующих дисциплин: «Технологическая практика», а также при написании выпускной квалификационной работы.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 ак.ч. Программой дисциплины предусмотрены лекционные (36 ак.ч.), практические (18 ак.ч.), лабораторные (18 ак.ч.) занятия и самостоятельная работа студента (72 ак.ч.).

Дисциплина изучается на 2 курсе в 4 семестре. Форма промежуточной аттестации – экзамен.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины направлен на формирование компетенций, представленных в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание компетенции	Код	Код и наименование индикатора
_	компете	достижения компетенции
	нции	
Способен применять в расчетах	ОПК-4	ОПК-4.1. Демонстрирует понимание
теоретические основы рабочих		основных законов термодинамики,
процессов в энергетических		выполняет расчеты основных
машинах и установках		показателей термодинамических
		циклов и проводит анализ их
		эффективности.
		ОПК-4.2. Демонстрирует понимание
		основных законов движения жидкости
		и газа, определяет параметры потоков
		рабочих сред.
		ОПК-4.3. Демонстрирует понимание
		основных законов и способов переноса
		теплоты и массы, проводит
		исследования и расчет процессов
		тепломассообмена в соответствии с
		заданной методикой.
		ОПК-4.4. Демонстрирует знание
		теоретических основ электротехники.

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 4 зачётных единицы, 144 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим и лабораторным занятиям, текущему контролю, выполнение индивидуального задания, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам 4
Аудиторная работа, в том числе:	72	72
Лекции (Л)	36	36
Практические занятия (ПЗ)	18	18
Лабораторные работы (ЛР)	18	18
Курсовая работа/курсовой проект	-	-
Самостоятельная работа студентов (СРС), в том	72	72
Числе:	8	8
Подготовка к лекциям	<u> </u>	8
Подготовка к лабораторным работам		
Подготовка к практическим занятиям / семинарам	8	8
Выполнение курсовой работы / проекта	-	-
Расчетно-графическая работа (РГР)	<u>-</u>	-
Реферат (индивидуальное задание)	12	12
Домашнее задание	6	6
Подготовка к контрольной работе	-	-
Подготовка к коллоквиуму	2	2
Аналитический информационный поиск	10	10
Работа в библиотеке	10	10
Подготовка к экзамену	8	8
Промежуточная аттестация – экзамен (Э)	Э(2)	Э(2)
Общая трудоемкость дисциплины		
ак.ч.	144	144
3.e.	4	4

5 Содержание дисциплины

С целью освоения компетенций, приведенных в п.3 дисциплина разбита на 4 темы:

- тема 1 (Общие сведения о термодинамике);
- тема 2 (Термодинамические закономерности в идеальных газах);
- тема 3 (Термодинамические закономерности в реальных газах и парах);
 - тема 4 (Термодинамические процессы в тепловых машинах).

Виды занятий по дисциплине и распределение аудиторных часов для очной формы приведены в таблице 3.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкос ть в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1	Общие сведения о термодинамике	Основные понятия и определения в технической термодинамике. Термодинамическая система. Термодинамический процесс. Основные термодинамические параметры состояния	10	Определение параметров газа в начальном и конечном состояниях	4	Изучение приборов для измерения термодинамических параметров	4
2	Термодинамические закономерности в идеальных газах	Законы и уравнения состояния идеальных газов. Реальные газы. Теплоемкость газов. Энтропия. Первый закон термодинамики. Изохорный, изобарный, изотермический, адиабатный и политропный процессы.	8	Изучение законов идеальных газов	4	Определение показателя адиабаты воздуха	4
	Термодинамические закономерности в реальных газах и парах	Реальные газы и пары. Второй закон термодинамики. Водяной пар. Истечение и дросселирование газов (пара). Влажный воздух	10	Изучение свойств водяного пара	6	Определение параметров влажного воздуха	6
4	Термодинамические процессы в тепловых машинах	Термодинамические основы компрессорных машин и циклы тепловых двигателей. Газотурбинные установ-ки	8	Анализ процессов в тепловых машинах	4	Определение конечных параметров для каждого из трех процессов сжатия в компрессоре	4
	Всего аудиторных ч	насов	36	18	ı	18	l

~ 1

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 4 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
ОПК-4	экзамен	Комплект контролирующих материалов для экзамена

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- тестовый контроль или устный опрос на коллоквиуме всего 40 баллов;
 - лабораторные работы всего 10 баллов;
- за выполнение индивидуального и домашнего задания всего 50 баллов.

экзамен проставляется автоматически, если студент набрал в течение семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Экзамен по дисциплине проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время зачетной недели студент имеет право повысить итоговую оценку либо в форме устного собеседования по приведенным ниже вопросам (п.п. 6.5), либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 5.

Таблица 5 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале	
учебной деятельности	зачёт/экзамен	
0-59	Не зачтено/неудовлетворительно	
60-73	Зачтено/удовлетворительно	
74-89	Зачтено/хорошо	
90-100	Зачтено/отлично	

6.2 Домашнее задание

В качестве домашнего задания студенты выполняют:

- работу над составлением конспекта изученного материала;
- составляется список терминов в области термодинамики, которые встретились при изучении тем по дисциплине, а также приводятся определения этих терминов.

При выполнении задания, используется справочная литература и материалы сети Интернет.

В качестве индивидуального задания студенты очной формы готовят реферат или презентацию на одну из приведенных ниже тем.

6.3 Темы для рефератов (презентаций) – индивидуальное задание

- 1) Основные законы термодинамики и их применение в технике.
- 2) Циклы Карно и их значение для тепловых машин.
- 3) Термодинамика и экология: последствия изменения климата.
- 4) Использование термодинамики в холодильном оборудовании.
- 5) Теория горячих и холодных источников в термодинамических процессах.
 - 6) Работа и тепло: различия и применение в реальных системах.
 - 7) Термодинамика в химических реакциях: закон сохранения энергии.
 - 8) Способы улучшения эффективности тепловых двигателей.
- 9) Термодинамические циклы в современных энергетических установках.
 - 10) Нанотехнологии и термодинамика: новые подходы к энергии.
 - 11) Психрометрия: термодинамика влажного воздуха.
 - 12) Термодинамика в криогенной технике.
- 13) Использование термодинамических моделей для предсказания поведения материалов.
 - 14) Влияние температуры на физические свойства материалов.
 - 15) Термообработка и ее влияние на свойства металлов и сплавов.
 - 16) Термодинамика в биохимии: процессы метаболизма.
 - 17) Исследование процессов теплообмена в природе.
- 18) Теоретическая и практическая термодинамика: методика эксперимента.
 - 19) Влияние давления на термодинамические свойства веществ.
- 20) Устойчивость термодинамических систем и ее влияние на технологические процессы.
 - 21) Феномен энтропии: понятие и его значение в термодинамике.
- 22) Автомобильные двигатели: термодинамические аспекты и эффективность.
 - 23) Термодинамика в ракетной технике: работа и энергия.
- 24) Использование термодинамических моделей для анализа и измерений.
 - 25) Термодинамика и восприятие энергии в повседневной жизни.

6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Тема 1 Общие сведения о термодинамике

- 1) Что такое термодинамика и каковы её основные цели?
- 2) Какие физические величины характеризуют состояние термодинамической системы?
 - 3) Объясните понятийные различия между терминами "внутренняя

энергия", "теплота" и "работа".

- 4) Какова физическая интерпретация понятия энтропия?
- 5) Что такое циклический термодинамический процесс?
- 6) Что такое термодинамическая система? Приведите примеры.
- 7) Опишите различные способы теплопередачи: теплопроводность, конвекция и излучение.
 - 8) Что такое изотермический и адиабатический процессы?

Тема 2 Термодинамические закономерности в идеальных газах

- 1) Запишите уравнение состояния идеального газа.
- 2) Что такое закон Бойля-Мариотта?
- 3) Каковы предпосылки для применения уравнения состояния идеального газа?
 - 4) Опишите, как давление и температура связаны в термодинамике.
 - 5) Какова роль идеального газа в термодинамических расчетах?
 - 6) Каковы основные виды термодинамических процессов?
- 7) Как рассчитывается работа в изотермическом процессе для идеального газа?
 - 8) Что такое микро- и макро-состояния системы?

Тема 3 Термодинамические закономерности в реальных газах и парах

- 1) Каковы основные отличия между идеальным и реальным газом?
- 2) Что такое уравнение состояния реального газа и в чем заключается его роль в термодинамике?
- 3) Объясните закон Бойля-Мариотта и его пределы применения для реальных газов.
- 4) Что такое критическая точка и как она связана с поведением реальных газов и паров?
- 5) Объясните, что такое энтальпия и как она используется для описания процессов нагревания реальных газов и паров.
- 6) Каковы основные принципы, лежащие в основе исследования фазовых переходов в системах реальных газов и паров (например, от газа к жидкости)?
- 7) Как влияет на термодинамические свойства реального газа его молекулярная структура и межмолекулярные взаимодействия?
- 8) Что такое закон Гей-Люссака и как он применяется к реальным газам в процессе их нагревания или охлаждения при постоянном объеме?

Тема 4 Термодинамические процессы в тепловых машинах

- 1) Опишите основные компоненты тепловой машины и их функции. Какова роль рабочего тела в этом процессе?
- 2) Что такое цикл Карно и какие законы термодинамики он иллюстрирует?
 - 3) Каковы основные этапы термодинамического цикла Ренкина?
- 4) Как результирующая работа, выполняемая тепловой машиной, связана с количеством тепла, передаваемым от источника тепла к машине и

от машины к холодному резервуару?

- 5) Объясните, как работает паровая машина и какие термодинамические процессы в ней протекают.
- 6) Расскажите о законе сохранения энергии и теплотехнических условиях, необходимых для эффективной работы тепловых машин.
- 7) Каковы понятия "изобарный", "изохорный", "изотермический" и "адиабатический" процессы?
- 8) Объясните понятие "двигатель внутреннего сгорания" и как его работа отличается от работы паровой машины?

6.5 Вопросы для подготовки к экзамену (тестовому коллоквиуму)

- 1) Что такое термодинамика и каковы её основные цели?
- 2) Какие физические величины характеризуют состояние термодинамической системы?
- 3) Объясните понятийные различия между терминами "внутренняя энергия", "теплота" и "работа".
 - 4) Каковы основы первого закона термодинамики?
 - 5) Какова физическая интерпретация понятия энтропия?
 - 6) Сформулируйте второй закон термодинамики.
- 7) Что такое циклический процесс и каким образом он связан с первым законом термодинамики?
 - 8) Что такое термодинамическая система? Приведите примеры.
- 9) Опишите различные способы теплопередачи: теплопроводность, конвекция и излучение.
 - 10) Чем определяется эффективность теплового двигателя?
 - 11) Что такое изотермический и адиабатический процессы?
 - 12) Объясните принцип работы холодильного цикла.
- 13) В чем разница между прямым и обратным процессами в термодинамике?
- 14) Что такое критическая точка, и как она относится к фазовым переходам?
 - 15) Каковы основные виды термодинамических процессов?
- 16) Как рассчитывается работа в изотермическом процессе для идеального газа?
 - 17) Запишите уравнение состояния идеального газа.
- 18) Каковы предпосылки для применения уравнения состояния идеального газа?
 - 19) Опишите, как давление и температура связаны в термодинамике.
 - 20) Какова роль идеального газа в термодинамических расчетах?
 - 21) Объясните, что такое термодинамический цикл.
 - 22) Какие существуют примеры термодинамических циклов?
 - 23) Какова эффективность реальных тепловых двигателей по

сравнению с идеальными?

- 24) Опишите процесс Ренкина и его применение.
- 25) Как используется цикл Карно в тепловых машинах.
- 26) Что такое микро- и макро-состояния системы?
- 27) Как изменяется энтропия при различных фазовых переходах?
- 28) Каковы правила возрастания энтропии и их значение?
- 29) Какова зависимость между энтропией и теплотой?
- 30) Каково значение термодинамики в химических реакциях?
- 31) Какое значение имеет свободная энергия в химической термодинамике?
 - 32) Что такое стандартная энтальпия реакции?
- 33) Как рассчитываются термодинамические параметры для реакций в различных состояниях?
 - 34) Какова основная идея кинетической теории газов?
 - 35) Как кинетическая теория объясняет давление идеального газа?
- 36) Какова связь между температурой и средней кинетической энергией молекул газа?
 - 37) Как термодинамика используется в климатологии?
- 38) Какие термодинамические принципы применяются в холодильных установках?
- 39) Каковы основные применения термодинамических законов в инженерии?
- 40) Объясните, как термодинамические закономерности влияют на естественные процессы, такие как круговорот воды.
 - 41) Каковы экологические последствия термодинамических процессов?
 - 42) Объясните термодинамические аспекты работы солнечных панелей.
- 43) Какие термодинамические принципы лежат в основе работы паровых турбин?
- 44) Что такое эффективность преобразования энергии и как она рассчитывается?
- 45) Каковы основные направления исследований в области термодинамики?
 - 46) Какие новые технологии основаны на принципах термодинамики?
 - 47) Как термодинамика помогает в исследовании изменений климата?
 - 48) В чем значение термодинамики для изучения наноматериалов?
- 49) Какие современные проблемы термодинамики связаны с возобновляемыми источниками энергии?
 - 50) Что такое фазовая диаграмма?
 - 51) Каково значение термодинамических аспектов в биосистемах?
- 52) Объясните, как термодинамика влияет на производство и переработку материалов.
 - 53) Как термодинамика связана с общими законами физики?
 - 54) Что такое идеальный газ и как он отличается от реальных газов?

- 55) Как можно измерить температуру в термодинамической системе?
- 56) Каковы основные отличия между идеальным и реальным газом?
- 57) Что такое уравнение состояния реального газа и в чем заключается его роль в термодинамике?
- 58) Объясните закон Бойля-Мариотта и его пределы применения для реальных газов.
- 59) Что такое критическая точка и как она связана с поведением реальных газов и паров?
- 60) Объясните, что такое энтальпия и как она используется для описания процессов нагревания реальных газов и паров.
- 61) Как влияет на термодинамические свойства реального газа его молекулярная структура и межмолекулярные взаимодействия?
- 62) Что такое закон Гей-Люссака и как он применяется к реальным газам в процессе их нагревания или охлаждения при постоянном объеме?
- 63) Опишите основные компоненты тепловой машины и их функции. Какова роль рабочего тела в этом процессе?
- 64) Что такое цикл Карно и какие законы термодинамики он иллюстрирует?
 - 65) Каковы основные этапы термодинамического цикла Ренкина?
- 66) Как результирующая работа, выполняемая тепловой машиной, связана с количеством тепла, передаваемым от источника тепла к машине и от машины к холодному резервуару?
- 67) Объясните, как работает паровая машина и какие термодинамические процессы в ней протекают.
- 68) Расскажите о законе сохранения энергии и теплотехнических условиях, необходимых для эффективной работы тепловых машин.
- 69) Каковы понятия "изобарный", "изохорный", "изотермический" и "адиабатический" процессы?
- 70) Объясните понятие "двигатель внутреннего сгорания" и как его работа отличается от работы паровой машины?

6.6 Примерная тематика курсовых работ

Курсовые работы не предусмотрены.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Белов, Г. В. Термодинамика: учебник и практикум для вузов / Г. В. Белов. 4-е изд., перераб. и доп. М.: Издательство Юрайт, 2024. 572 с. URL: https://urait.ru/bcode/544923. Режим доступа: для авториз. пользователей. Текст: электронный/ (дата обращения: 01.07.2024).
- 2. Петров, А. И. Техническая термодинамика и теплопередача / А. И. Петров. 3-е изд., стер. Санкт-Петербург : Лань, 2024. 428 с. URL: https://e.lanbook.com/book/362333 . Режим доступа: для авториз. пользователей. Текст: электронный/(дата обращения: 01.07.2024).

Дополнительная литература

- 1. Карнаух, В.В. Техническая термодинамика: учебник / В. В. Карнаух, А. Б. Бирюков, К. А. Ржесик, А. Н. Лебедев. Вологда: Инфра-Инженерия, 2022. 500 с. URL: https://znanium.com/catalog/product/1902596. Режим доступа: для авториз. пользователей. Текст: электронный /(дата обращения: 01.07.2024).
- 2. Крутов, В.И. Техническая термодинамика: Учебник для вузов / В.И.Крутов М.: Высшая школа, 1981. 439 с. URL: https://studizba.com/files/termodinamika/book/205632-krutov-v.i.-tehnicheskaja-termodinamika.html. Режим доступа: свободный. Текст : электронный /(дата обращения: 01.07.2024).
- 3. Новиков, И.И. Термодинамика. Учебное пособие. 2-е изд. / Новиков И.И.. М.: Лань, 2023. 592 с. URL: http://i.uran.ru/webcab/books/termodinamika-uchebnoe-posobie-2-e-izd. Режим доступа: для авториз. пользователей. Текст : электронный /(дата обращения: 01.07.2024).

Нормативные ссылки

1. Российская Федерация. Законы. Федеральный закон об охране окружающей среды от 10.01.2002 года N 7-ФЗ№ 197-ФЗ: принят Государственной Думой 20 декабря 2001 года: одобрен Советом Федерации 26 декабря 2001 года. — Текст: электронный // Гарант: информационноправовое обеспечение / Компания «Гарант». — URL: http://ivo.garant.ru/proxy/share?data=q4Og0aLnpN5Pvp_qlYqx6bXpuebl_Jzz57_e Sb-

<u>i6pXz5qXaovfynfCZtcCg01K08vKI8JzigeKN_Y39jOip_aXyxb_dpOO12VSP1LS</u> X66DgseC65YvljKw= / (дата обращения: 01.07.2024).

- 2. СанПиН 1.2.3685-21. Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания: утвержден Главным государственным санитарным врачом Российской Федерации 30.12.2022: введены: 01.03.2021. М.: Стандартинформ, 2021. 469 с. URL: https://www.garant.ru/products/ipo/prime/doc/406408041/ (дата обращения: 01.07.2024).
- 3. О федеральном государственном надзоре в области промышленной безопасности : Постановление Правительства РФ от 30.10.2021 № 1082. Текст : электронный // ГАРАНТ.РУ: иформационно-правовой портал. URL: https://www.garant.ru/products/ipo/prime/doc/401323288/ (дата обращения: 01.07.2024).

Учебно-методическое обеспечение

- 2. Абаляев, А.Ю. Сборник задач по термодинамике / А.Ю. Абаляев, А. Б. Люхтер Владимир: Владим. гос. ун-т им. А. Г. и Н. Г. Столетовых: Издво ВлГУ, 2022. 84 с. URL: https://dspace.www1.vlsu.ru/bitstream/123456789/9607/1/02351.pdf. Режим доступа: свободный. Текст: электронный /(дата обращения: 01.07.2024).

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт. Алчевск. URL: <u>library.dstu.education</u>. Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст : электронный.
- 3. Консультант студента: электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст : электронный.
- 4. Университетская библиотека онлайн : электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main-ub-red. Текст :

электронный.

- 5. IPR BOOKS : электронно-библиотечная система. Красногорск. URL: http://www.iprbookshop.ru/. Текст : электронный.
- 6. Федеральная служба по экологическому, технологическому и атомному надзору (Ростехнадзор) : официальный сайт. Москва. https://www.gosnadzor.ru/. Текст : электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 7.

Таблица 6 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местоположение) учебных кабинетов
Специальные помещения:	
Лаборатория теоретических основ теплотехники (24 посадочных мест). Оборудование: - насос вакуумный;	ауд. 3.113, корп. №3
- стол лабораторный;	
- компрессор;	
- лабораторная мебель: столы, стулья для студентов (по	
количеству обучающихся), рабочее место преподавателя.	
Аудитории для проведения лекционных и практических занятий, для самостоятельной работы: Компьютерный класс (25 посадочных мест), оборудованный учебной мебелью, компьютерами с неограниченным доступом к сети Интернет, включая доступ к ЭБС: ПТК Intel (Core) Qard, 2,5, DVD-RW, 500 ГБ, ОЗУ 3,25 ГБ, видеокарта NVIDIA GeForce 9500GT, LG Flatron W2443ISE, USD2, принтер HP laserit MP1005 MFP; - ПТК CELERON 2,5, DVD-RW, ЖД 400 ГБ, ОЗУ 2 ГБ, видеокарта NVIDIA GeForce 9500GT, LG Flatron W1943SE, принтер Canon Pixma MP150; - ПТК CELERON 1,1, 2,5, CD-R, ЖД 40 ГБ, ОЗУ 128 МБ, USB, видеокарта Radeon 64 МБ, LG Flatron F150; - ПТК CELERON 2,7, DVD-RW, ЖД 40 ГБ, ОЗУ 256 МБ, USB, видеокарта Radeon 64 МБ, LG Flatron F720	ауд. 203 и 205, корп. лабораторный ауд.216, корп. лабораторный

Лист согласования РПД

Разработал		
доц. кафедры горных	X 1/2	
энергомеханических систем	<u>В.А.Зотов</u>	
(должность)	(подпусь) (Ф.И.О.)	
(должность)	(подпись) (Ф.И.О.)	_
(должность)	(подпись) (Ф.И.О.)	_
(Д	()	
M a papawyayyana wahaynay panyyyy		
И.о. заведующего кафедрой горных	В.Ю. Доброногов	
энергомеханических систем	(полись) (Ф.И.О.)	<u>sa</u>
	,	
Протокол № <u>1</u> заседания кафедры		
горных энергомеханических систем	от <u>31.08</u> 20 <u>24</u>	Γ.
	0	
	<i>y</i>	
И.о. декана факультета горно-металлургич	еской с	
промышленности и строительства	О.В. Князьков	_
	(подпися) (Ф.И.О.)	
Согласовано		
Connacobano		
Председатель методической		
комиссии по специальности	•	
21.05.04 Горное дело	/	
(специализация «Горные машины		
и оборудование»)	ON KHASPKOB	
н ооорудовинием)	(подпусь) (Ф.И.О.)	
	0.	
Начальник учебно-методического центра	О.А. Коваленко)
,	(DOLLINGE) (DIACO)	

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения изменений			
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:		
Основание:			
Подпись лица, ответственного за внесение изменений			