МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет	горно-металлургической промышленности и строительства
Кафедра	технологии и организации машиностроительного производства
	УТВЕРЖДАЮ И. о. проректора по учебной работе Д. В. Мулов
	РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ
	Аппаратные и программные средства систем управления (наименование дисциплины)
	15.03.03 Прикладная механика (код, наименование направления/специальности)
	(код, наименование направления/специальности)
Проектно	о-конструкторское обеспечение машиностроительных производств (профиль подготовки)
15.03.05 K	онструкторско-технологическое обеспечение машиностроительных
	ПРОИЗВОДСТВ (код. наименование направления/специальности)
	Технология машиностроения (профиль подготовки)
	(hpoquius nezzeresiii)

Квалификация

Форма обучения

бакалавр (бакалавр/специалист/магистр)

очная, заочная (очная, очно-заочная, заочная)

1 Цели и задачи изучения дисциплины

Цель дисциплины. Целью изучения дисциплины «Аппаратные и программные средства систем управления» является подробное ознакомление с назначением и устройством систем управления технологическими процессами и технологическим оборудованием современных промышленных предприятий, особенностями построения систем управления для решения конкретных производственных задач.

Задачи изучения дисциплины:

- изучение современных автоматизированных систем управления, проблем и возможностей их применения; алгоритмического и программного обеспечения средств и систем машиностроительных производств;
- обучение выбору информационных и технических средств разработки технологий и изделий, связанных с применением автоматизированных систем управления технологическими процессами;
- формирование у студентов навыков работы с современными аппаратными и программными средствами систем управления; выбора программного обеспечения для разработки автоматизированных систем управления технологическими процессами.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины — курс входит в БЛОК 1 «Дисциплины (модули)», часть Блока 1, формируемую участниками образовательных отношений по направлениям подготовки 15.03.03 Прикладная механика (профиль «Проектно-конструкторское обеспечение машиностроительных производств») и 15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств (профиль «Технология машиностроения»).

Дисциплина реализуется кафедрой технологии и организации машиностроительного производства.

Основывается на базе дисциплин «Исполнительные механизмы и кинематика станков», «Основы машиностроительных технологий», «Оборудование машиностроительных производств», «Основы технологии машиностроения».

Является основой для дальнейшего освоения компетенций, связанных со сферами и областями профессиональной деятельности в соответствии с ФГОС ВО и ОПОП ВО.

Успешное изучение дисциплины требует от студента наличия сформированных компетенций в областях информационных технологий.

Курс является фундаментом для ориентации студентов в области применения аппаратных и программных средств систем управления современных промышленных предприятий и технологического оборудования.

Общая трудоёмкость освоения дисциплины для очной формы обучения составляет 2 зачётных единицы, 72 ак. ч. Программой дисциплины предусмотрены лекционные занятия (18 ак. ч.), практические занятия (18 ак. ч.)) и самостоятельная работа студента (36 ак. ч.). Дисциплина изучается на 4-м курсе в 7-м семестре. Форма промежуточной аттестации — зачет.

Общая трудоёмкость освоения дисциплины для заочной формы обучения составляет 2 зачётных единицы, 72 ак. ч. Программой дисциплины предусмотрены лекционные занятия (4 ак. ч.), практические занятия (4 ак. ч.) и самостоятельная работа студента (64 ак. ч.). Дисциплина изучается на 5-м курсе в 9-м семестре. Форма промежуточной аттестации — зачет.

3 Перечень результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Аппаратные и программные средства систем упралвения» направлен на формирование компетенций, представленных в таблице 1.

Таблица 1 — Компетенции, обязательные к освоению

Код	Наименование специальности, Компетенция направления (код, содержание) подготовки		Индикатор (код, наименование)	
15.03.03		гических процессов изготовления машиностроительных изделий низкой 1 и средней 2 сложности в	ПК-4.4. Знает функциональные возможности SCADA-систем по сбору, обработке и отображению информации о технологических процессах автоматизированного изготовления машиностроительных изделий низкой и средней степени сложности ПК-4.6. Умеет использовать данные SCADA-систем для анализа производственной ситуации и выявления причин брака при автоматизированном изготовлении машиностроительных изделий низкой и средней сложности	
		анализ технологических операций механосборочного производства с целью выявления переходов, под-	ПК-6.5. Знает PDM-систему: возможности и порядок просмотра информации о технологических	
15.03.05	технологическое	работы по доводке и освоению технологических процессов, средств и систем технологического	ПК-4.1. Умеет использовать данные SCADA-систем для анализа производственной ситуации и выявления причин брака при изготовлении машиностроительных изделий низкой степени сложности	

¹ — к машиностроительным изделиям низкой сложности относят детали из конструкционных углеродистых и низколегированных сталей, серых и высокопрочных чугунов, полимеров и композиционных материалов, обрабатываемых резанием, имеющих до 15 обрабатываемых поверхностей, в том числе точность не выше 12-го квалитета и шероховатостью не ниже Ra3,2 (ПС40.031).

² — к машиностроительным изделиям средней сложности относят детали из конструкционных, инструментальных, коррозионно-стойких сталей, чугунов, полимеров и композиционных материалов разных видов, цветных сплавов на основе меди и алюминия, обрабатываемых резанием, имеющих от 15 до 30 обрабатываемых поверхностей, в том числе точностью не выше 8-го квалитета и шероховатостью не ниже Ra0,8 (ПС40.031).

		3	
T.C.	Наименование специальности,	Компетенция	Индикатор
Код	направления	(код, содержание)	(код, наименование)
	подготовки	, , , , , ,	
	, ,	ки производства машино-	возможности SCADA-систем по
		строительной продукции	сбору, обработки и отображению
			информации о технологических
			процессах изготовления машино-
			строительных изделий низкой
			сложности
		ПК-6 Способен разрабаты-	ПК-6.4. Знает PDM-системы: воз-
			можности и порядок поиска и
			просмотра данных о машиностро-
		с помощью современного	
		специализированного про-	
		граммного обеспечения	
		для технологической под-	
		готовки производства	
			ПК-7.2. Умеет использовать
			САРР-системы для нормирования
			технологических операций изго-
			товления машиностроительных
		ные работы, а также рабо-	
		ту персонала и фондов	
		оплаты труда, принимать	
		решения на основе эконо-	
		мических расчётов	

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 2 зачётных единицы, 72 ак. ч.

Самостоятельная работа студента (СРС) включает подготовку к лекционным и практическим занятиям, подготовку к сдаче двух коллоквиумов и зачета по дисциплине.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределения бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 — Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам 7-й семестр	
Аудиторная работа, в том числе:	36	36	
Лекции (Л)	18	18	
Практические занятия (ПЗ)	18	18	
Лабораторные работы (ЛР)			
Курсовая работа/курсовой проект			
Самостоятельная работа студентов (СРС), в том числе:	36	36	
Подготовка к лекциям	8	8	
Подготовка к лабораторным работам			
Подготовка к практическим занятиям / семинарам	18	18	
Выполнение курсовой работы / проекта			
Расчётно-графическая работа (РГР)		_	
Реферат (индивидуальное задание)			
Домашнее задание			
Подготовка к контрольной работе		_	
Подготовка к коллоквиуму	6	6	
Аналитический информационный поиск			
Работа в библиотеке			
Подготовка к зачету	6	6	
Промежуточная аттестация — зачет (3)	3	3	
Общая трудоёмкость дисциплины			
ак.ч.	72	72	
3.e.	2	2	

5 Содержание дисциплины

С целью освоения компетенций, приведенных в п. 3, дисциплина разбита на 4 темы:

- тема 1. Введение в дисциплину.
- тема 2. Аппаратные средства промышленных компьютеров.
- тема 3. Цифровые промышленные сети.
- тема 4. Варианты реализации цифровых промышленных сетей.

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблицах 3 и 4.

Таблица 3 — Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

No	Наименование		Трудоём-		Трудоём-	Темы	Трудоём-
Π/Π	темы (раздела)	Содержание лекционных занятий	кость в	Темы практических занятий	кость в	лабораторных	кость в
11.11	дисциплины		ак. ч.		ак. ч.	занятий	ак. ч.
1	Введение в дисциплину	Цель и задачи курса. Основные понятия и определения. Предпосылки для развития автоматизации в машиностроении. Свойства современных систем управления технологическим оборудованием	2.0	1. Системы счисления, применяемые в цифровых промышленных сетях	4,0	_	_
2	Аппаратные средства про- мышленных компьютеров	Назначение и функции, выполняемые системной шиной компьютера. Типы системных шин. Шины ISA, EISA, VESA, PCI. Индустриальные модификации шины PCI: PC/104Plus, StakPC, PMC	2.0			_	
		Промышленные компьютеры верхнего уровня автоматизации. Особенности условий их эксплуатации и обусловленные этим требования к конфигурации. Индустриальные рабочие станции	2,0	2. Измерение текстовой информации	2,0	_	
		Промышленные компьютеры нижнего уровня автоматизации. Контроллеры. Виды контроллеров. Встраиваемые промышленные компьютеры нижнего уровня автоматизации: требования к встраиваемым системам и их функциональные особенности	2,0	2. Измерение графической информации	2,0		_
		Внешние устройства промышленных компьютеров. Устройства для хранения информации: жесткие диски и твердотельные накопители, их преимущества и недостатки. Особенности промышленных SSD накопителей. Дисплеи промышленных компьютеров и требования к ним. Сенсорные экраны. Промышленные клавиатуры и KVM-консоли. Средства связи вычислительной системы и объекта управления. Энкодеры. Интерфейсные модули	2,0	3. Логические основы вычислительной техники. Логические операции и выражения	2,0		_

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоём- кость в ак. ч.	Темы практических занятий	Трудоём- кость в ак. ч.	Темы лабораторных занятий	Трудоём- кость в ак. ч.
	Цифровые промышлен- ные сети	Особенности цифровых промышленных сетей (ЦПС). Функции узлов ЦПС. Режимы обмена данными в ЦПС. Обеспечение надежности ЦПС. Основные требования к ЦПС	2.0	3. Логические основы вычислительной техники. Чтение и разработка логических схем	2,0	_	_
		Характеристики ЦПС. Сетевая топология «общая шина», «кольцо», «звезда». Сетевая модель OSI, уровни информационного сервиса ЦПС. Типы доступа к физическому каналу передачи данных	2.0	4. Алгоритмизация. Основные алгоритмические структуры. Чтение алгоритма	6,0		
4	лизации циф- ровых про- мышленных	Типы ЦПС. Понятие Fieldbus. Семейство ЦПС Profibus. Задачи, решаемые Profibus. Спецификация Interbus. Активное оборудование ЦПС: повторители, концентраторы, маршрутизаторы, шлюзы. ЦПС на основе полевых шин. Сети LAN, MAN, WAN	2,0			_	_
		Протоколы MODBUS, HART, CAN, AS-интерфейс. Сети Interbus-S, Devise-Net. Контроллерные сети BITBUS, ControlNet, Modbus Plus. Универсальные сети: World-FIP, CANBus, LonWorks, Foundation-Filebus, TokenRing, ARCNET. Сравнительная характеристика ЦПС	2,0			_	_
		Всего аудиторных часов:	18,0		18,0		

Таблица 4 — Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

No	Наименование		Трудоём-		Трудоём-	Темы	Трудоём-
_П /П	темы (раздела)	Содержание лекционных занятий	кость в	Темы практических занятий	кость в	лабораторных	кость в
11/11	дисциплины		ак. ч.		ак. ч.	занятий	ак. ч.
1	Введение в	Цель и задачи курса. Основные понятия и опреде-		3. Логические основы вы-			
	дисциплину	ления. Предпосылки для развития автоматизации в	2,0	числительной техники. Ло-	2,0		
		машиностроении. Свойства современных систем	2,0	гические операции и выра-	2,0		
		управления технологическим оборудованием		жения			
3	Цифровые	Особенности цифровых промышленных сетей		3. Логические основы вы-			
	промышлен-	(ЦПС). Функции узлов ЦПС. Режимы обмена дан-	2,0	числительной техники. Чте-	2,0		
	ные сети	ными в ЦПС. Обеспечение надежности ЦПС. Ос-	2,0	ние и разработка логических	2,0		
		новные требования к ЦПС		схем			
	·	Всего аудиторных часов:	4,0		4,0		

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценке сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень работ по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 — Перечень работ по дисциплине и способы оценивания знаний

Вид учебной работы	Способ оценивания	Количество баллов
Выполнение заданий на	Защита отчетов по практиче-	24—40
практических занятиях	ским занятиям	24—40
Сдача коллоквиума по те-	Тестирование или устный	18—30
мам 1 и 2	опрос	18—30
Сдача коллоквиума по те-	Тестирование или устный	18—30
мам 3 и 4	опрос	18—30
	ИТОГО:	60—100

Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального количества баллов.

Зачёт по дисциплине «Аппаратные и программные средства систем управления» проводится по результатам работы студента в семестре. Если студент набрал в течение семестра не менее 60 баллов и отчитался за каждую контрольную точку, зачёт проставляется автоматически. В случае если полученная в семестре сумма баллов не устраивает студента, на 18-й неделе семестра студент имеет право повысить итоговую оценку, либо на устном собеседовании по нижеприведенным вопросам (п. 6.4), либо по результатам тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 — Шкала оценивания знаний

Сумма баллов за все виды учебной	Оценка по национальной шкале
деятельности	зачёт
0—59	не зачтено
60—73	зачтено
74—89	зачтено
90—100	зачтено

6.2 Практические занятия

При изучении дисциплины предусмотрено выполнение четырех практических занятий

Практическое занятие №<u>1.</u> Системы счисления, применяемые в цифровых промышленных сетях.

Цель занятия: научиться переводить числа из одной позиционной системы счисления в другую и выполнять арифметические операции в двоичной, восьмеричной и шестнадцатеричной системах счисления.

Задание:

- 1. Перевести каждое число из десятичной системы счисления в двоичную, восьмеричную и шестнадцатеричную системы счисления. Перевод смешанных чисел выполнять с точностью до двух знаков после запятой.
 - 2. Перевести каждое число в десятичную систему счисления.
 - 3. Сложить числа.
 - 4. Выполнить вычитание.
 - 5. Выполнить умножение.

При выполнении каждого задания подробно показать, как получен результат. Решение каждой задачи должно содержать ответ, но задачи, содержащие только ответы, не засчитываются.

Примерный вариант задания:

- 1. a) 860_{10} ; б) 785_{10} ; в) $149,375_{10}$; г) $953,25_{10}$.
- 2. a) 1001010_2 ; б) $110101101,00011_2$; в) $775,11_8$; г) $294,3_{16}$.
- 3. a) $1101100000_2 + 10110110_2$; 6) $1001000111,01_2 + 100001101,101_2$;
 - B) $271,34_8 + 1566,2_8$; Γ) $65,2_{16} + 3CA,8_{16}$
- 4. a) $1011001001_2 1000111011_2$; 6) $101010000, 10111_2 11001100, 01_2$;
 - B) $731,6_8 622,6_8$; r) $22D,1_{16} 123,8_{16}$.
- 5. a) $1011001_2 \times 1011011_2$; б) $723,1_8 \times 50,2_8$.

Практическое задание №2. Измерение информации.

Цель занятия: изучить подходы к определению количества информации, получить навыки определения количества информации, содержащегося в сигнале.

Задание:

Решить предложенные задачи согласно варианту. Решение каждой задачи должно сопровождаться подробным описанием, должно содержать ответ, но задачи, содержащие только ответы, не засчитываются.

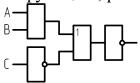
Примерный вариант задания:

- 1. Система управления промышленным роботом-манипулятором подаёт шесть видов сигналов (взять заготовку из тары; переместить заготовку на станок; освободить заготовку и убрать манипулятор из рабочей зоны станка; взять обработанную деталь; переместить деталь к тактовому столу; положить деталь в тару). Устройство управления манипулятором последовательно воспроизводит данные сигналы. Подряд записано 100 сигналов. Определите информационный объём сигналов в байтах.
- 2. В автоматизированном складе хранится 8 упаковок гаек М6 и 24 упаковки гаек М10. Сколько бит информации несёт сообщение о том, что достали упаковку гаек М6?
- 3. Определить объем видеопамяти, необходимый для хранения двух страниц изображения при условии, что разрешающая способность дисплея

равна 640×350 пикселей, а количество используемых цветов — 16.

4 Книга, набранная с помощью компьютера, содержит 150 страниц, на каждой странице — 42 строки, в каждой строке — 50 символов, Каков объем информации в книге?

Практическое задание №3. Логические основы вычислительной техники.


Цель занятия: научиться строить таблицы истинности логических формул, а также научиться представлять логические выражения с помощью логических схем.

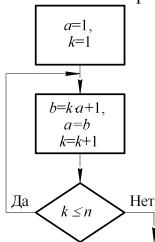
Задание:

Решить предложенные задания согласно варианту. При выполнении каждого задания подробно показать, как получен результат. Решение каждой задачи должно содержать ответ, но задачи, содержащие только ответы, не засчитываются.

Примерный вариант задания:

- 1. Построить таблицу истинности для формулы $(\overline{X \wedge \overline{Y}}) \rightarrow (\overline{X} \vee \overline{Y})$.
- 2. Построить логическую схему по формуле $\overline{B} \wedge C \vee \overline{A} \wedge B$.
- 3. Определить логическую функцию, реализуемую логической схемой:

Практическое задание №4. Алгоритмизация.


Цель занятия: развить и закрепить навыки чтения и анализа схем алгоритмов.

Задание:

Решить предложенную задачу согласно варианту. Решение задачи должно содержать исходную блок-схему, запись алгоритма на псевдокоде и таблицу пошагового выполнения алгоритма.

Примерный вариант задания:

Дано n = 10. Вычислить n-е значение переменной b.

6.3 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Тема 1 Введение в дисциплину

- 1. Дайте определение понятия «управление».
- 2. Что такое система управления?

- 3. Что такое автоматизированная система управления? Чем она отличается от ручной системы управления и от автоматической системы управления?
- 4. В чем заключаются особенности систем управления современным промышленным производством?
 - 5. Что такое промышленная сеть?

Тема 2 Аппаратные средства промышленных компьютеров.

- 1. Что такое системная компьютерная шина?
- 2. Что такое мезонинная плата?
- 3. Какая системная компьютерная шина стала первой стандартизованной?
 - 4. В чем заключаются особенности системной шины ISA?
- 5. Что такое разрядность системной шины? Какова разрядность шины ISA?
 - 6. В чем заключаются особенности системной шины EISA?
 - 7. В чем заключаются особенности системной шины VESA?
 - 8. В чем заключаются особенности системной шины РСІ?
- 9. В чем заключаются основные преимущества базовой модификации шины PCI?
- 10. Назовите основные модификации системной компьютерной шины РСІ.
- 11. В чем измеряется высота специального оборудования систем управления? Чему равна эта единица измерения?
 - 12. Что такое промышленный контроллер?
- 13. Что представляет собой модификация шины PCI StakePC? Где она используется?
- 14. Что представляет собой модификация шины PCI PMC? Где используется эта модификация?
- 15. Что представляет собой модификация шины PCI PC/104Plus? Какова область ее применения?
- 16. В чем заключаются конструктивные особенности шины PC/104Plus?
 - 17. В чем заключаются особенности конструкции шины StakePC?
- 18. Перечислите особенности, присущие конфигурации промышленных компьютеров.
 - 19. Что такое контроллер?
 - 20. Что такое энкодер?
- 21. Для чего предназначены программируемые логические контроллеры?
 - 22. Для чего предназначены программируемые интеллектуальные реле?
 - 23. Для чего предназначены встроенные электронные контроллеры?
 - 24. Перечислите функциональные особенности встраиваемых РС-

систем.

- 25. В чем заключаются преимущества твердотельных накопителей для хранения информации?
- 26. Перечислите недостатки твердотельных накопителей для хранения информации.
- 27. Что представляет собой KVM-консоль? Для чего она предназначена?

Тема 3. Цифровые промышленные сети

- 1. Укажите основные особенности цифровых промышленных сетей.
- 2. Какие функции выполняют узлы цифровой промышленной сети?
- 3. От каких факторов количество данных, передаваемых в цифровой промышленной сети?
- 4. Что дает двунаправленность информационного канала связи в цифровых промышленных сетях?
- 5. Сколько видов режимов обмена данными в цифровых промышленных сетях существует?
- 6. В чем заключаются особенности обмена данными в цифровых промышленных сетях, организованных по принципу «ведущий-ведомый»?
- 7. Какой режим обмена данными в цифровых промышленных сетях является наиболее простым?
- 8. Как изменяются роли ведущего и ведомого в цифровой промышленной сети, организованной по принципу «ведущий-ведомый»?
- 9. В чем заключаются особенности обмена данными в цифровых промышленных сетях, организованных по принципу «клиент-сервер»?
- 10. Как изменяются функции сервера и клиента в цифровой промышленной сети, организованной по принципу «клиент-сервер»?
 - 11. Какие варианты режима обмена данными «подписка» существуют?
- 12. В чем заключаются особенности обмена данными в цифровых промышленных сетях, организованных по принципу «подписка»?
 - 13. Что такое квитирование?
- 14. Какие факторы обеспечивают надежность передачи данных в цифровых промышленных сетях?
- 15. Чем обеспечивается защита цифровых промышленных сетей от повреждений линий передачи данных?
- 16. Благодаря чему в цифровых промышленных сетях обеспечивается снижение вычислительной нагрузки на центральный компьютер?
- 17. Охарактеризуйте степень приспособленности цифровых промышленных сетей к переконфигурации.
 - 18. Что такое сетевая топология?
 - 19. Сколько видов сетевой топологии существует?
- 20. Как называется вариант топологии цифровой промышленной сети, при котором к общему кабелю подключены оконечные устройства?

- 21. Зачем в топологии «общая шина» используется терминатор?
- 22. В чем заключаются преимущества топологии цифровой промышленной сети «общая шина»?
- 23. В чем заключаются особенности топологии цифровой промышленной сети «кольцо»?
- 24. В чем заключаются преимущества топологии цифровой промышленной сети «кольцо»?
- 25. Каковы недостатки топологии цифровой промышленной сети «кольцо»?
- 26. Как называется вариант топологии цифровой промышленной сети, при котором все узлы присоединяются к центральному узлу, образуя физический сегмент сети?
- 27. Каковы преимущества топологии цифровой промышленной сети «звезда»?
- 28. В чем заключаются недостатки топологии цифровой промышленной сети «звезда»?
- 29. Какое оборудование может использоваться в качестве центральных узлов в сети, построенной по топологии «звезда»?
- 30. Как называется попытка двух и более сетевых устройств начать передачу данных одновременно?
 - 31. Как называется фрагмент данных, передаваемых по линии связи?
- 32. Как называется любой компьютер, подключенный к локальной или глобальной сети?
 - 33. Сколько уровней сервиса имеет сетевая модель OSI?
 - 34. Перечислите последовательность уровней сетевой модели OSI.
 - 35. Каково назначение физического уровня сетевой модели OSI?
 - 36. Каково назначение канального уровня сетевой модели OSI?
 - 37. Каково назначение сетевого уровня сетевой модели OSI?
 - 36. Каково назначение транспортного уровня сетевой модели OSI?
 - 37. Каково назначение сеансового уровня сетевой модели OSI?
 - 38. Каково назначение представительского уровня сетевой модели OSI?
 - 39. Каково назначение прикладного уровня сетевой модели OSI?
- 40. Сколько типов доступа к физическому каналу существует в цифровых промышленных сетях?

Тема 4. Варианты реализации цифровых промышленных сетей

- 1. Какую функцию в цифровой промышленной сети выполняет концентратор?
- 2. Какую функцию в цифровой промышленной сети выполняет коммутатор?
- 3. Какую функцию в цифровой промышленной сети выполняет маршрутизатор?
 - 4. Какие варианты сети ProfiBus существуют?

- 5. Для решения каких задач предназначена сеть ProfiBus-DP?
- 6. Для решения каких задач предназначена сеть ProfiBus-FMS?
- 7. Для решения каких задач предназначена сеть ProfiBus-PA?
- 8. Укажите общее название цифровых промышленных сетей, обеспечивающих информационные потоки между контроллерами, датчиками сигналов и разнообразными исполнительными механизмами.
 - 9. Какой режим обмена данными использует сеть BitBus?
- 10. Охарактеризуйте возможность построения сложных систем на базе протокола BitBus.
- 11. Сколько режимов передачи данных по шине определяет протокол BitBus?
- 12. В чем особенность контроля над системной шиной у протокола World-FIP?
- 13. Сколько адресуемых узлов можно установить в любом месте шины сегмента сети ControlNet?
 - 14. Какое максимальное количество узлов допускает сеть ModBus Plus?
 - 15. Как реализована передача данных в сети ModBus Plus?
- 16. Какое максимальное число абонентов и ретрансляторов может присутствовать в одном сегменте сети BitBus?

6.5 Материалы для подготовки к зачету

Для оценки знаний, приобретённых студентом в процессе освоения дисциплины, используются следующие вопросы:

- 1. Дайте определение понятий: «управление», «система управления», «автоматизированная система управления».
- 2. В каких направлениях развиваются системы управления промышленным производством? Охарактеризуйте эти направления.
- 3. Что такое компьютерная (системная) шина? Какие типы компьютерных (системных) шин существуют?
- 4. Какие индустриальные модификации системной шины PCI существуют? Охарактеризуйте область применения каждой из них.
- 5. Какие функции выполняют современные промышленные компьютеры? Охарактеризуйте условия, в которых они работают.
- 6. Какие особенности конфигурации промышленных компьютеров обусловлены их назначением?
- 7. Что такое промышленный контроллер? Какие виды промышленных контроллеров существуют?
- 8. Какие требования предъявляются к встраиваемым РС-системам? В чем заключаются конструктивные и функциональные особенности встраиваемых РС-систем?
- 9. Что представляет собой иерархия промышленных компьютеров? Какие функции выполняют компьютеры верхнего (нижнего) уровней?

- 10. Какие внешние устройства хранения информации применяются в промышленных компьютерах?
- 11. Каковы особенности установки жестких дисков в промышленных компьютерах?
- 12. В чем заключаются преимущества и недостатки твердотельных накопителей как устройств хранения информации в промышленных компьютерах?
- 13. В чем заключаются основные отличия промышленных твердотельных накопителей информации от бытовых (офисных) твердотельных накопителей?
- 14. В чем заключаются различия между параллельной и последовательной передачей данных?
- 15. В чем заключаются основные различия между интерфейсами SATA и IDE?
- 16. Каковы отличительные особенности промышленных мониторов и дисплеев?
 - 17. В чем заключаются особенности промышленных клавиатур?
 - 18. Что такое KVM-консоли?
 - 19. Что такое интерфейсные модули?
- 20. Что представляет собой централизованная система обмена данными? Каковы ее недостатки?
- 21. Что представляют собой цифровые промышленные сети? Каковы особенности цифровых промышленных сетей?
- 22. Какие функции могут выполнять узлы цифровых промышленных сетей?
- 23. В чем заключаются преимущества цифровых промышленных сетей по сравнению с централизованными схемами обмена данными?
- 24. Как происходит обмен данными между узлами цифровой промышленной сети в режиме «ведущий-ведомый»?
- 25. Как происходит обмен данными между узлами цифровой промышленной сети в режиме «клиент-сервер»?
- 26. Как происходит обмен данными между узлами цифровой промышленной сети в режиме «подписка»?
- 27. Что понимается под надежностью цифровых промышленных сетей? Какие факторы обеспечивают надежность передачи информации в промышленных сетях?
- 28. Какие основные требования предъявляются к цифровым промышленным сетям?
- 29. Что представляет собой топология промышленной сети «общая шина»? В чем ее преимущества и недостатки?
- 30. Что представляет собой топология промышленной сети «кольцо»? В чем ее преимущества и недостатки?

- 31. Что представляет собой топология промышленной сети «звезда»? В чем ее преимущества и недостатки?
- 32. Какие функции в цифровых промышленных сетях выполняют концентраторы? Как они работают?
- 33. Какие функции в цифровых промышленных сетях выполняют коммутаторы? Как они работают?
- 34. Какие функции в цифровых промышленных сетях выполняют маршрутизаторы? Как они работают?
 - 35. Что такое сетевая модель OSI? Для чего она используется?
- 36. Какие уровни информационного сервиса предусмотрены согласно сетевой модели OSI?
- 37. Какие типы доступа к физическому каналу передачи данных применяются в цифровых сетях?
- 38. Что понимают под архитектурой цифровой промышленной сети? Что такое модель ISO/OSI?
- 39. Что такое цифровой протокол МАР 3.0 (протокол автоматизации производства)?
- 40. Что такое цифровой протокол ТОР 3.0? (протокол деятельности учреждения)?
- 41. Как устроены и как функционируют цифровые промышленных сети, построенные на основе полевых шин?
- 42. Что представляет собой стандарт цифровых промышленных сетей Foundation Fieldbus?
- 43. Что представляет собой цифровая промышленная сеть PROFIBUS? Какие варианты построения этой сети существуют и где применяется каждый из них?
- 44. Что представляют собой контроллерные цифровые промышленные сети? Какой протокол передачи данных используется в этих сетях?
 - 45. Что представляет собой цифровая промышленная сеть ControlNet?
- 46. Что такое протокол Modbus Plus и как он используется в цифровых промышленных сетях?
- 47. Что представляют собой универсальные цифровые сети? Какой протокол используется в этих сетях?
- 48. Дайте сравнительную характеристику цифровых промышленных сетей.
- 49. Охарактеризуйте перспективы развития цифровых промышленных сетей.
- 50. Как выбрать тип цифровой промышленной сети? Какие факторы влияют на выбор?

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Сбродов, Н. Б. Устройства автоматики : учебное пособие / Н. Б. Сбродов. Курган : Изд-в Курганского гос. ун-та, 2024. 114 с. https://www.elibrary.ru/item.asp?id=67304161 (дата обращения : 04.07.2024). Режим доступа : после регистрации.
- 2. Рыжова, А. А. Обзор аппаратных и программных средств распределенной системы управления Centum VP: учебное пособие / А. А. Рыжова, Д. А. Рыжов, Р. К. Нургалиев // Казан. нац. исслед. технол. ун-т. Казань: Редационно-издательский центр «Школа», 2020. 231 с. https://www.elibrary.ru/item.asp?id=44034722 (дата обращения: 03.07.2024). Режим доступа: после регистрации.

Дополнительная литература

- 3. Кангин, В.В. Аппаратные и программные средства систем управления. Промышленные сети и контроллеры / В.В. Кангин, В.Н. Козлов. М.: БИНОМ. Лаборатория знаний, 2010. 418 с. : ил. https://djvu.online/file/Vn4JL78FGMfQq?ysclid=m5z7als2ze859781529 (дата обращения 16.06.2024). Режим доступа : свободный.
- 4. Кулебякин, А. А. Аппаратные и программные средства систем управления: учеб. пособие / А. А. Кулебякин, Ю. А. Легенкин. Ярославль: Изд-во ЯГТУ, 2010. 114 с. https://tms.ystu.ru/kuleb-apccu%202010.pdf (дата обращения : 03.07.2024). Режим доступа : свободный.
- 5. Корнилин, Д. В. Аппаратные и программные средства систем обработки информации на основе ПЛИС и микропроцессоров [Электронный ресурс]: электрон. учеб. пособие / Д. В. Корнилин, И. А. Кудрявцев; Минобрнауки России, Самар. гос. аэрокосм. ун-т им. С. П. Королёва (нац. исслед. унт). Электрон. текстовые и граф. дан. (1,8 Мбайт). Самара, 2012. https://energy4all.ru/forth/books/kornilin.pdf?ysclid=m5z7jwo69t867443884 (дата обращения: 13.07.2024). Режим доступа: свободный.

Учебно-методическое обеспечение

6. Арифметические основы цифровой техники : Методические указания к практическим занятиям по курсу «Прикладная теория информации» / Сост. : В. Д. Горбоконенко, В. Е. Шикина. — Ульяновск : УлГТУ, 2003. — 27 с. — https://777russia.ru/book/uploads/%D0%9F%D0%A0%D0%9E%D0%98%D0%97%D0%9E%D0%9E%D0%94%D0%A1%D0%A2%D0%92%D0%9E/%D0%90%

D1%80%D0%B8%D1%84%D0%BC%D0%B5%D1%82%D0%B8%D1%87%D0

<u>%B5%D1%81%D0%BA%D0%B8%D0%B5%20%D0%BE%D1%81%D0%BD%D0%BE%D0%B2%D1%8B%20%D1%86%D0%B8%D1%84%D1%80%D0%BE%D0%B2%D0%BE%D0%B9%20%D1%82%D0%B5%D1%85%D0%BD%D0%B8%D0%BA%D0%B8.pdf?ysclid=m5z7ng9px1585455961</u> (дата обращения : 05.06.20204). — Режим доступа : свободный.

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека Федерального государственного бюджетного образовательного учреждения высшего образования «Донбасский государственный технический университет» (ФГБОУ ВО «ДонГТУ») : официальный сайт. URL : http://library.dstu.education. Текст : электронный.
- 2. Научно-техническая библиотека Белгородского государственного технологического университета им. В. Г. Шухова : официальный сайт. Белгород. URL : https://ntb.bstu.ru/jirbis2. Текст : электронный.
- 3. Электронная библиотечная система Консультант студента : [сайт]. Москва. URL : https://www.studentlibrary.ru/?ysclid=m0p04ni4nl646701969. Текст : электронный.
- 4. Университетская библиотека ONLINE :[сайт]. URL : https://biblioclub.ru/index.php?page=book_blocks&view=main_ub. Текст : электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице

Таблица 7 — Материально-техническое обеспечение

	Адрес
Have coverage of anymorphy and five anymorphy	(местоположение)
Наименование оборудования учебных кабинетов	учебных
	кабинетов
Специальные помещения:	
Лекционная аудитория (60 посадочных мест), оборудованная специа-	
лизированной (учебной) мебелью (парта — 20 шт., стол компьютер-	ауд. <u>103</u> корп.
ный — 1 шт., доска аудиторная — 2 шт.), АРМ преподавателя (си-	<u>третий</u>
стемный блок ПК + монитор), мультимедийный проектор, широко-	
форматный экран	

Лист согласования РПД

Разработал старший преподаватель кафедры технологии и организации С. Ю. Стародубов машиностроительного производства (должность) Заведующий кафедрой технологии и организации машиностроительного производства (наименование кафедры) Протокол No заседания кафедры технологии и организации машиностроительного производства от 20 24 г. Согласовано Председатель методической комиссии по 15.03.03 направлению подготовки Прикладная («Проектномеханика конструкторское обеспечение машиностроительных производств») (подпись) Председатель методической комиссии по направлению подготовки 15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств («Технология машиностроения») А. М. Зинченко (полписы

Начальник учебно-методического центра

(подпись)

O. А. Коваленко (Ф.И.О)

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения изменений				
<u> </u>	· ·			
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:			
Octoo	DOTHIA:			
Основание:				
Подпись лица, ответственного за внесение изменений				