МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

 Факультет
 горно-металлургической промышленности и строительства

 Кафедра
 машин металлургического комплекса

И.о. проректора по учебной работе

Д.В.Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Моделирова	ние процессов и объектов в металлургическом производстве
	(наименование)
1	5.04.02 Технологические машины и оборудование (код, наименование направления)
	Металлургическое оборудование
	(образовательная программа)
Квалификация	магистр
	(бакалавр/специалист/магистр)
Форма обучения	очная, заочная
	(очная очно-заочная заочная)

1 Цели и задачи изучения дисциплины

Цели дисциплины. Основной целью освоения дисциплины «Моделирование процессов и объектов в металлургическом производстве» — формирование у студентов:

- комплекса теоретических знаний и практических навыков в сфере моделирования физических, химических, тепловых, термодинамических и технологических процессов в металлургии, математических и экспериментальностатистических методов описания и анализа моделируемых процессов, создание и оптимизация математических моделей узлов, механизмов, машин;
- приобретения навыков применения прикладных программных средств при решении практических вопросов, проектирования, обработки массивов данных, построение математических моделей, получения графических и иных интерпретаций получаемой информации.

Задачи дисциплины:

Получение профессиональных навыков по профилю специальности:

- формирование профессиональных умений и навыков в постановке задачи и построения математической модели для исследования основных процессов в металлургии, технологических операций по эксплуатации металлургических машин и управления производством;
- использования программных математических комплексов для решения задач моделирования металлургических процессов, их теоретического и экспериментального исследования.

Дисциплина направлена на формирование общепрофессиональных (ОПК-5) компетенций выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины — курс входит в БЛОК 1 «Дисциплины (модули)», формируемые участниками образовательных отношений по направлению подготовки 15.04.02 Технологические машины и оборудование (образовательная программа магистра «Металлургическое оборудование»).

Дисциплина реализуется кафедрой машин металлургического комплекса. Основывается на базе дисциплин подготовки бакалавра: «Информатика», «Теория технических систем», «Основы проектирования металлургических машин», «Эксплуатация и обслуживание металлургического оборудования», «Металлургические технологии и комплексы».

Является основой для научно-исследовательской работы и выполнения выпускной квалификационной работы.

Программа дисциплины строится на предпосылке, что студенты обладают знаниями в области информационных технологий и работы в сети Интернет, знанием английского языка в объеме, позволяющем читать научную и учебную литературу.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 ак.ч.

При очной форме обучения программой дисциплины предусмотрены лекционные (18 ак.ч.), практические (18 ак.ч.), лабораторные (18 ак.ч.) занятия и самостоятельная работа студента (90 ак.ч.).

При заочной форме обучения программой дисциплины предусмотрены лекционные (4 ак.ч.), практические (4 ак.ч.), лабораторные (4 ак.ч.) занятия и самостоятельная работа студента (132 ак.ч.).

Дисциплина при очной и заочной форме обучения изучается на 1 курсе во 2 семестре обучения по образовательной программе магистратуры. Форма промежуточной аттестации — экзамен.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

В результате освоения учебных материалов обучающийся должен овладеть компетенциями, приведенными в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание компетенции	Код компе- тенции	Код и наименование индикатора достижения компетенции
1	2	3
		Общепрофессиональные компетенции
Способен разра-	ОПК-5	ОПК-5.1. Знать общую методологию математического моделирова-
батывать анали-		ния в технике
тические и чис-		ОПК-5.2. Уметь ставить задачи математического моделирования
ленные методы		машин и аппаратов
при создании		ОПК-5.3. Владеть навыками решения проблем в профессиональной
математических		деятельности на основе анализа и синтеза
моделей машин,		ОПК-5.4. Владеть навыками построения математических моделей в
приводов, обо-		сфере профессиональной деятельности
рудования, си-		
стем, техноло-		
гических про-		
цессов		

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 4 зачётных единицы, 144 ак. ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим занятиям, текущему контролю, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

	_	Ι .
Вид учебной работы	Всего	Ак. ч. по семестрам
Вид у теоноп расоты	ак. ч.	2
Аудиторная работа, в том числе:	54	54
Лекции (Л)	18	18
Практические занятия (ПЗ)	18	18
Лабораторные работы (ЛР)	18	18
Курсовая работа/курсовой проект	_	_
Самостоятельная работа студентов (СРС), в том	90	90
числе:	90	90
Подготовка к лекциям	4	4
Подготовка к лабораторным работам	18	18
Подготовка к практическим занятиям / семинарам	18	18
Выполнение курсовой работы / проекта	_	_
Расчетно-графическая работа (РГР)	_	_
Реферат (индивидуальное задание)	_	_
Домашнее задание	_	_
Подготовка к контрольной работе	6	6
Подготовка к коллоквиуму	_	_
Аналитический информационный поиск	_	_
Работа в библиотеке	9	9
Подготовка к экзамену	36	36
Промежуточная аттестация – экзамен	Э	Э
Общая трудоемкость дисциплины		
ак. ч.	144	144
3. e.	4	4

5 Содержание дисциплины

С целью освоения компетенции, приведенной в п.3 дисциплина разбита на 3 темы:

- тема 1 (Моделирование детерминированных процессов, математический аппарат, используемый при синтезе математической модели);
- тема 2 (Численные методы для анализа и расчета технологических процессов);
- тема 3 (Задачи дискретной оптимизации и динамического программирования).

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 3 и 4 соответственно.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

I		1							, ,
Трудоемкость в ак. ч.	8	2	7	2	2	2	2	2	2
Трудоемкость Тема лабораторных Трудоемкость в ак. ч. в ак. ч.	7	Вербальное опи- сание модели, де- скриптивная мо- дель	Реализация экспериментально- статистических методов матема- тического описа- ния	Корреляционно- регрессионный анализ объектов исследования	Расчеты парамет- ров методами ин- терполяции	Поиск решения методом дихото- мии	Итерационные ме- тоды	Постановка дис- кретных задач оп- гимизации	Построение нор- мативной функции
Трудоемкость' в ак. ч.	9	2		2	2	2	2	2	2
тических гий	5	Обобщение данных. Опре- деление перечня управля- ющих параметров	Метод: аналогий; экспе- риментально- статистический; парамет- рической идентификации	Построение и исследова- ние регрессионных моде- лей	Практическое вычисление методом интерполяции, интерполяция сплайнами	Метод дихотомии	Метод Ньютона-Рафсона	Дискретная оптимизация	Критерий оптимальности, нормативная функция
Трудоемкость в ак. ч.	4	2	2	2	2	2	2	7	2
ционных заня- Й	3	Структурно-параметрическое описание и назначение пара- метров объекта	Математический аппарат, ис- пользуемый при синтезе мате- матической модели	Экспериментально- статистические методы мате- матического описания	Численные мето- Интерполяционные методы ды для анализа и обработки исходных данных, расчета техноло- формула Ньютона, многочлен гических процес- Лагранжа	Метод половинного деления для уравнения	Поиск решений, с применени- ем математических методов	Задачи дискрет- Постановка дискретных оптиной оптимизации мизационных задач и динамического	Принцип оптимальности, рекурентные соотношения
№ Наименование п/п темы (раздела) дисциплины	1 2	Моделирование детерминирован- ных процессов, математический	аппарат, используемый при синтезе математической модели		 Численные мето- Интерпол ды для анализа и обработки расчета техноло- формула I гических процес- Лагранжа 	сов		Задачи дискрет- ной оптимизации и динамического	программирова- ния
М п/п	1				(1			3	

8	2		18
<i>L</i>	Проверка адекват-	ности модели	
9	2		18
5	Способы проверки адек-	ватности модели	
4	2		18
3	Методы проверки гипотезы об	адекватности модели	Всего аудиторных часов:
2	,	. •	
1			

Таблица 4 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

№ Наименование темы п/п (раздела) дисциплины	Содержание лекционных занятий в ак. ч.	Трудоемкость в ак. ч.	Темы практических Трудоемкость Тема лабораторных Трудоемкость занятий в ак. ч. в ак. ч. в ак. ч.	Трудоемкость в ак. ч.	Тема лабораторных ["] занятий	Грудоемкость в ак. ч.
1 Моделирование детерминированных процессов, математический аппарат, используемый при синтезе математической модели	Структурно-параметрическое описание объекта. Математиче- ский аппарат при синтезе мате- матической модели	2	Метод: аналогий; экс- периментально- статистический; пара- метрической иденти- фикации	2	Корреляционно- регрессионный анализ объектов исследования	2
2 Численные методы для анализа и расчета технологических процессов	2 Численные методы Интерполяционные методы об- для анализа и расчетаработки исходных данных, фор- технологических мула Ньютона, многочлен Ла- процессов гранжа	2	Практическое вычис- ление методом интер- поляции, интерполя- ция сплайнами	2	Расчеты парамет- ров методами ин- терполяции	7
3 Задачи дискретной оптимизации и ди- намического про- граммирования	Постановка дискретных оптими- зационных задач. Методы про- верки гипотезы об адекватности модели	2	Цискретная оптимиза- ция	2	Постановка дис- кретных задач оп- тимизации	2
	Всего аудиторных часов:	9		9		9

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
ОПК-5	экзамен	Комплект контролирующих материалов для экзамена

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- практические работы всего 60 баллов;
- контрольные работы всего 40 баллов.

Экзамен проставляется автоматически, если студент набрал в течение семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Экзамен по дисциплине «Эргономика машин металлургического производства» проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, он имеет право повысить итоговую оценку на экзамене. Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды учебной	Оценка по национальной шкале
деятельности	экзамен
0-59	неудовлетворительно
60-73	удовлетворительно
74-89	хорошо
90-100	отлично

6.2 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Тема 1 Моделирование детерминированных процессов, математический аппарат, используемый при синтезе математической модели

- 1) Что такое детерминированный процесс и чем он отличается от стохастического?
- 2) Зачем нужно моделировать детерминированные процессы? Какие цели при этом преследуются?
- 3) Какие этапы включает в себя процесс построения математической модели?
 - 4) Что такое адекватность модели и как ее оценивают?
- 5) Какие основные типы математических моделей детерминированных процессов вы знаете?
- 6) Какие основные разделы математики используются при моделировании детерминированных процессов?
- 7) Что такое дифференциальное уравнение и как оно используется в моделировании?
- 8) Какие методы решения дифференциальных уравнений вы знаете и в каких случаях они применяются?
- 9) Что такое линейные и нелинейные дифференциальные уравнения? В чём их отличие?
 - 10) Что такое интегральное уравнение и в каких задачах оно используется?
- 11) Как теория матриц и линейная алгебра используются при моделировании детерминированных систем?
- 12) Что такое преобразование Лапласа и для чего оно применяется в моделировании?
- 13) Как используются методы оптимизации при построении математических моделей?
- 14) Какова роль численных методов в моделировании детерминированных процессов?
- 15) Как происходит переход от физической или иной сущности процесса к его математическому описанию?
- 16) Что такое параметризация модели и как определяются значения параметров?
- 17) Как учитываются начальные и граничные условия при построении модели?
- 18) Как упростить сложную математическую модель без потери ее адекватности?
 - 19) Какие допущения могут быть сделаны при построении модели?
- 20) Как можно проверить корректность построенной математической модели?
- 21) Приведите примеры детерминированных процессов и соответствующих им математических моделей.

- 22) Как математическое моделирование помогает в инженерных расчетах и проектировании?
- 23) Какие ограничения есть у математических моделей детерминированных процессов?
- 24) Как используются компьютерные технологии в моделировании детерминированных процессов?
- 25) Какие современные тенденции развития математического моделирования вы знаете?

Тема 2 Численные методы для анализа и расчета технологических процессов

- 1) Что такое численные методы и зачем они нужны в анализе технологических процессов?
 - 2) Какие основные этапы решения задачи численными методами?
 - 3) Что такое аппроксимация и какова её роль в численных методах?
- 4) Что такое погрешность численного метода, и какие виды погрешностей существуют?
 - 5) Чем отличаются явные и неявные численные методы?
- 6) Какие численные методы применяются для решения алгебраических уравнений? (Примеры: метод бисекции, метод Ньютона-Рафсона)
 - 7) Как работает метод итераций?
- 8) Какие численные методы используются для решения обыкновенных дифференциальных уравнений? (Примеры: метод Эйлера, методы Рунге-Кутты)
- 9) Что такое шаг интегрирования и как его выбор влияет на точность решения?
- 10) Как применяются численные методы для решения систем дифференциальных уравнений?
- 11) Какие численные методы существуют для решения уравнений в частных производных? (Примеры: метод конечных разностей, метод конечных элементов)
- 12) Какие существуют численные методы для задач оптимизации? (Примеры: градиентный спуск, метод Ньютона)
- 13) В чём разница между локальным и глобальным минимумом (максимумом)?
- 14) Как используются численные методы для нахождения оптимальных параметров технологических процессов?
 - 15) Что такое метод штрафных функций и где он применяется?
- 16) Какие численные методы применяются для интерполяции и экстраполяции данных? (Примеры: полиномиальная интерполяция, сплайны)
- 17) Как используется численное интегрирование для вычисления площадей и объёмов? (Примеры: метод трапеций, метод Симпсона)
- 18) Какие численные методы применяются для сглаживания и фильтрации данных?
 - 19) Что такое метод наименьших квадратов и как он применяется для ап-

проксимации экспериментальных данных?

- 20) Приведите примеры применения численных методов в конкретных технологических процессах (например, теплопередача, массоперенос, гидродинамика).
- 21) Как численные методы помогают в моделировании и анализе работы технологического оборудования?
- 22) Какие особенности применения численных методов для моделирования сложных многофазных процессов?
- 23) Как используются специализированные программные пакеты (например, ANSYS, COMSOL) для численного моделирования технологических процессов?
- 24) Какие требования предъявляются к точности и устойчивости численных решений в инженерной практике?
- 25) Какие современные тенденции развития численных методов вам известны и как они влияют на анализ технологических процессов?

Teма 3 Задачи дискретной оптимизации и динамического программирования

- 1) Что такое дискретная оптимизация и чем она отличается от непрерывной оптимизации?
 - 2) Какие основные классы задач дискретной оптимизации вы знаете?
- 3) Что такое целевая функция и ограничения в задаче дискретной оптимизации?
 - 4) Что такое допустимое решение и оптимальное решение?
 - 5) В чем заключается сложность задач дискретной оптимизации?
 - 6) Что такое задача о рюкзаке и какие ее разновидности существуют?
 - 7) Опишите задачу коммивояжера и ее практическое значение.
 - 8) Что такое задача о назначениях и как она решается?
 - 9) Что такое задача о покрытии множества?
 - 10) Приведите примеры задач дискретной оптимизации из реальной жизни.
 - 11) Что такое полный перебор и почему он не всегда эффективен?
- 12) Какие эвристические алгоритмы вы знаете для решения задач дискретной оптимизации?
 - 13) Как работает метод ветвей и границ?
 - 14) Что такое метод отжига (имитации отжига) и где он применяется?
- 15) Какие алгоритмы используют линейное программирование для решения дискретных задач?
- 16) Что такое динамическое программирование и когда его стоит применять?
 - 17) В чем заключается принцип оптимальности Белмана?
- 18) Какие основные этапы решения задачи методом динамического программирования?
- 19) В чём разница между прямой и обратной прогонами в динамическом программировании?

- 20) Какие типы задач эффективно решаются с помощью динамического программирования?
- 21) Как применять динамическое программирование для решения задачи о рюкзаке?
- 22) Как динамическое программирование может помочь в решении задачи о кратчайшем пути?
- 23) Приведите примеры использования динамического программирования в реальных задачах.
- 24) Какие преимущества и недостатки у динамического программирования по сравнению с другими методами?
- 25) Какие существуют современные подходы и тенденции в области дискретной оптимизации и динамического программирования?

6.3 Оценочные средства для промежуточной аттестации

- 1) Что такое детерминированная система и как ее поведение описывается математически?
- 2) Какие виды математических моделей используются для детерминированных процессов?
 - 3) Чем отличается аналитическое и численное моделирование?
- 4) Какова роль дифференциальных уравнений в моделировании? Приведите примеры.
- 5) Какие типы дифференциальных уравнений чаще встречаются в инженерных задачах?
- 6) Что такое начальные и граничные условия и как они влияют на решение дифференциальных уравнений?
- 7) Как используется интегральное исчисление при моделировании физических процессов?
 - 8) Что такое передаточная функция и где она применяется?
- 9) В чём суть метода Лапласа и как его использовать для решения дифференциальных уравнений?
- 10) Как используется линейная алгебра (матрицы и векторы) при моделировании систем?
- 11) Что такое фазовое пространство и как его использовать для анализа поведения системы?
- 12) Какие математические функции часто встречаются при описании детерминированных процессов?
 - 13) Как осуществляется параметризация математической модели?
 - 14) Что такое верификация и валидация модели?
- 15) Приведите примеры детерминированных процессов из разных областей науки и техники.
- 16) Что такое численный метод и чем он отличается от аналитического решения?
- 17) Какие основные типы погрешностей возникают при использовании численных методов?

- 18) В чём разница между явными и неявными методами численного интегрирования?
 - 19) Опишите метод Эйлера для решения дифференциальных уравнений.
 - 20) Что такое методы Рунге-Кутты и какие их преимущества?
- 21) Как используются численные методы для решения систем дифференциальных уравнений?
 - 22) Что такое метод конечных разностей и где он применяется?
- 23) Что такое метод конечных элементов и чем он отличается от метода конечных разностей?
- 24) Как используется численное интегрирование (например, метод трапеций) для вычисления интегралов?
 - 25) Как применяются численные методы для решения задач оптимизации?
- 26) Что такое интерполяция и экстраполяция и зачем они нужны в численных расчётах?
- 27) Как используются численные методы для обработки и сглаживания экспериментальных данных?
- 28) Какие существуют критерии выбора численного метода для конкретной задачи?
- 29) Как влияет размер шага на точность и стабильность численных решений?
- 30) Какие программные средства используются для численного моделирования технологических процессов?
 - 31) Что такое дискретная оптимизация, и какие типы задач она включает?
 - 32) Какие основные примеры задач дискретной оптимизации вы знаете?
 - 33) В чем заключается сложность задач дискретной оптимизации?
- 34) Что такое задача о рюкзаке, и какие подходы к ее решению существуют?
 - 35) Опишите задачу коммивояжера и ее варианты.
 - 36) Что такое задача о назначениях, и как ее решать?
- 37) Какие эвристические алгоритмы используются в дискретной оптимизации?
 - 38) Как работает метод ветвей и границ?
- 39) Что такое генетические алгоритмы, и как они применяются для решения задач оптимизации?
 - 40) Что такое метод отжига и когда его стоит использовать?
- 41) Что такое динамическое программирование и в чем его отличие от других методов?
 - 42) В чем состоит принцип оптимальности Белмана?
 - 43) Как динамическое программирование используется для решения задач?
- 44) Как динамическое программирование может помочь в решении задачи о кратчайшем пути?
- 45) Что такое рекуррентное соотношение в контексте динамического программирования?
 - 46) В чём разница между прямой и обратной прогонами в динамическом

программировании?

- 47) Какие преимущества и ограничения у динамического программирования?
- 48) Как можно использовать динамическое программирование для решения задач управления?
- 49) Приведите примеры применения дискретной оптимизации и динамического программирования в реальных задачах.
- 50) Какие современные тенденции существуют в области дискретной оптимизации и динамического программирования?

6.4 Примерная тематика курсовых работ

Курсовые работы не предусмотрены.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Моделирование систем и процессов : учебник для вузов / В. Н. Волкова [и др.] ; под редакцией В. Н. Волковой, В. Н. Козлова. 2-е изд., перераб. и доп. Москва : Издательство Юрайт, 2024. 510 с. Текст : электронный URL: https://urait.ru/bcode/535380 (дата обращения: 29.08.2024).
- 2. Колдаев В. Д. Численные методы и программирование : учебное пособие/ В. Д. Колдаев: под ред. Проф. Л.Г. Гагариной Москва: ИД «ФОРУМ»: ИНФА-Ь. 2024. 336 с. Текст : электронный URL: https://znanium.ru/catalog/document?id=449087 (дата обращения: 28.08.2024).

Дополнительная литература

1. Леушин И. О. Моделирование процессов и объектов в металлургии : учебник/ И. О. Леушин. – М.: ФОРУМ: ИНФА-Ь. 2019. – 207 с. — Текст : электронный — URL: https://znanium.ru/read?id=355608

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1 Научная библиотека ДонГТУ <u>library.dstu.education</u>
- 2 Электронная библиотека БГТУ им. Шухова http://ntb.bstu.ru/jirbis2/
- 3 Электронно-библиотечная система «Консультант студента» http://www.studentlibrary.ru/cgi-bin/mb4x
- 4 Электронно-библиотечная система «Университетская библиотека онлайн» http://biblioclub.ru/index.php?page=main ub red
- 5 Электронно-библиотечная система IPR BOOKS <u>Сублицензионный</u> договор с ООО "Научно-производственное предприятие "ТЭД КОМПАНИ", http://www.iprbookshop.ru/

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местоположение) учебных кабинетов
Количество посадочных мест – 38 шт.	
Доска для написания мелом - 1шт.	ауд. <u>222</u> корп. <u>1</u>
Компьютер ПК на базе Intel(R) Pentium(R) Gold G6405 CPU @	
4.10GHz - 13 шт.	
Компьютер Intel Pentium(R)-4 CPU @2.40GHz - 1 шт.	
Компьютер ПК на базе Intel CeleronCPU @2.40GHz - 2шт.	
Компьютер Intel Pentium(R) Dual-Core CPU E5200 @2.50GHz - 1 шт.	
Мультимедийный проектор Accer - 1	
Web камера - 1шт.	
Колонки (комплект) - 1 шт.	
Рециркулятор - 1 шт.	
Экран для проектора S'OK CINEMA MOTOSCREEN - 1 шт.	

Лист согласования РПД

Разработал доцент кафедры машин металлургического комплекса (должность)

(подпись)

В. А. Козачишен (ФИО)

Заведующий кафедрой машин металлургического комплекса

(подиись)

<u> Н. А. Денисова</u>

Протокол № <u>1</u> заседания кафедры машин металлургического комплекса

От 30 августа 2024 года

И.о. декана факультета металлургического и машиностроительного производства

Old 13/

О. В. Князьков (ФИО)

Согласовано

Председатель методической комиссии по направлению подготовки 15.04.02 Технологические машины и оборудование («Металлургическое оборудование»)

Начальник учебно-методического центра

Н. А. Денисова

О. А. Коваленко

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения изменений				
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:			
Ogway	2011112			
Осног	зание:			
Подпись лица, ответственного за внесение изменений				
,, ,, ,,				