Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Вишневский Дмитрий Александрович Должность: Ректор МИНИСТЕРСТВО НА УКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБРНАУКИ РОССИИ) Дата подписания: 30.04.2025 11:55:50

Уникальный программный ключ:

03474917c4d012283e5ad996a48a5e70bf8da057ДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

> Факультет информационных технологий и автоматизации производственных процессов Кафедра электроники и радиофизики **УТВЕРЖДАЮ** И о проректора по учебной работе Д.В. Мулов РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Цифровая и микропроцессорная техника (наименование дисциплины) 03.03.03 Радиофизика (код, наименование направления) Инженерно-физические технологии в промышленности (профиль подготовки)

Квалификация бакалавр (бакалавр/специалист/магистр) Форма обучения очная, очно-заочная (очная, очно-заочная, заочная)

1 Цели и задачи изучения дисциплины

Цели дисциплины. Целью изучения дисциплины «Цифровая и микропроцессорная техника» является освоение принципов построения и работы электронных средств обработки информации, управления и контроля, построенных на микропроцессорной основе.

Задачи изучения дисциплины:

– знакомство с основными видами микропроцессорной техники, освоение принципов построения микропроцессорных систем, овладение методов проектирования микропроцессорной техники.

Дисциплина направлена на формирование профессиональных (ПК-2, ПК-5) компетенций выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины — курс входит в элективные дисциплины (модули) БЛОКА 1 «Дисциплины (модули)» подготовки обучающихся по направлению 03.03.03 Радиофизика (профиль «Инженерно-физические технологии в промышленности»).

Дисциплина реализуется кафедрой электроники и радиофизики.

Основывается на базе дисциплин: «Цифровая схемотехника», «Радиоэлектроника», «Электронные и полупроводниковые приборы».

Освоение данной дисциплины необходимо для выбора направления научно-исследовательской работы, а также, приобретенные знания, могут быть использованы при защите выпускной квалификационной работы, включая подготовку к защите и процедуру защиты, производственной, преддипломной практике.

Дисциплина способствует углубленной подготовке к решению специальных практических профессиональных задач и формированию необходимых компетенций.

Общая трудоемкость освоения дисциплины составляет 2 зачетные единицы, 72 ак.ч. Программой дисциплины предусмотрены лекционные (20 ак.ч.), лабораторные (20 ак.ч.) занятия и самостоятельная работа студента (32 ак.ч.). Дисциплина изучается на 4 курсе в 8 семестре.

Для очно-заочной формы обучения программой дисциплины предусмотрены лекционные (12 ак.ч.), лабораторные (8 ак.ч.) занятия и самостоятельная работа студента (52 ак.ч.). Дисциплина изучается на 5 курсе в 9 семестре.

Форма промежуточной аттестации – экзамен.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Цифровая и микропроцессорная техника» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание компетенции	Код компетенции	Код и наименование индикатора достижения компетенции
Способен понимать принципы работы и методы эксплуатации современной радиоэлектронной, оптической аппаратуры и оборудования, и использовать основные методы радиофизических измерений.	ПК-2	ПК-2.2. Осваивает и применяет новейшие методы проведения теоретических и экспериментальных исследований в области профессиональной деятельности.
Способен применять на практике профессиональные знания и умения в сфере производства, внедрения и эксплуатации электронных приборов и систем различного назначения, полученные при освоении профильных физических дисциплин.	ПК-5	ПК-5.2 Описывать устройство, принципы работы и правила эксплуатации электронных и оптических приборов и устройств, а также систем различного назначения.

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 2 зачётные единицы, 72 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к лабораторным занятиям, текущему контролю, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам 8		
Аудиторная работа, в том числе:	40	40		
Лекции (Л)	20	20		
Практические занятия (ПЗ)	-	-		
Лабораторные работы (ЛР)	20	20		
Курсовая работа/курсовой проект	-	-		
Самостоятельная работа студентов (СРС), в том числе:	32	32		
Подготовка к лекциям	5	5		
Подготовка к лабораторным работам	10	10		
Подготовка к практическим занятиям / семинарам	1	-		
Выполнение курсовой работы / проекта	1	-		
Расчетно-графическая работа (РГР)	1			
Реферат (индивидуальное задание)	-	-		
Домашнее задание (индивидуальное задание)	-	-		
Подготовка к контрольной работе	1	-		
Подготовка к коллоквиуму	6	6		
Аналитический информационный поиск	1	-		
Работа в библиотеке	1	-		
Подготовка к экзамену	11	11		
Промежуточная аттестация – экзамен	Э	Э		
Общая трудоемкость дисциплины				
ак.ч.	72	72		
3.e.	2	2		

5 Содержание дисциплины

С целью освоения компетенций, приведенной в п.3 дисциплина разбита на 8 тем:

- тема 1 (Основные понятия и определения);
- тема 2 (Архитектура и функциональные возможности одно кристальных микроконтроллеров фирмы Silabs);
 - тема 3 (Организация ввода/вывода в МК);
 - тема 4 (Организация системы памяти микроконтроллеров);
 - тема 5 (Система синхронизации и сброса);
 - тема 6 (Таймеры в микроконтроллерах фирмы Silabs);
 - тема 7 (Аналоговая периферия в микроконтроллерах фирмы Silabs);
 - тема 8 (Цифро-аналоговые преобразователи).

Виды занятий по дисциплине и распределение аудиторных часов приведены в таблицах 3 и 4.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

No	Наименование темы	Содержание лекционных занятий	Трудоемкость	Темы практических	Трудоемкость	Тема	Трудоемкость
п/п	(раздела) дисциплины	Содержание лекционных занятии	в ак.ч.	занятий	в ак.ч.	лабораторных занятий	в ак.ч.
			8-й сел	иестр			
1	Основные понятия и определения	Принципы построения микропроцессорной техники. Архитектура микропроцессоров. Одно кристальные микроконтроллеры с СІЅС — архитектурою. Архитектура и функциональные возможности. САПР Proteus. Методы отладки, диагностики, моделирования и проектирования МПС.	2	_	-	Управление свето- диодами двумя кноп- ками	2
2	Архитектура и функциональные возможности одно кристальных микроконтроллеров фирмы Silabs	Основные характеристики микроконтроллеров фирмы Silabs. Структура процессора и логическая организация МК. Регистры специальных функций. Слово состояния программы. Особенности системы команд и приемы программирования.	2	-	-	Управление семи- сегменным индикато- ром.	2
3	Организация ввода/вывода в МК	Схема выходного буфера порта ввода/вывода. Программируемые порты ввода/вывода. Кросс бар. Разработка блок схем алгоритмов управления программно-аппаратными средствами.	2	-	-	Спектральный анализ случайных процессов с использованием ДПФ.	4
4	Организация системы памяти микроконтрол- леров		4	-	-	Управление семи сегментным матричным индикатором.	2

7

∞

No	Наименование темы	Содержание лекционных занятий	Трудоемкость	Темы практических	Трудоемкость		Трудоемкость
п/п	(раздела) дисциплины	-	в ак.ч.	занятий	в ак.ч.	лабораторных занятий	в ак.ч.
		внешней памяти. Программное формирование импульсов заданной длительности и периода. Управление матричной клавиатурой.					
5	Система синхрониза- ции и сброса	Внутренний генератор синхронизации. Внешний генератор синхронизации. Организация системы сброса. Управление семи сегментными индикаторами.	2	-	-	Оценивание спектра сигналов на основе параметрических моделей.	2
6	Таймеры в микро- контроллерах фирмы Silabs	Таймеры и режимы их работы. Программируемый массив-счетчиков РСА.	2	-	-	Формирование им- пульсов заданной длительности и пери- ода.	2
7	Аналоговая перифе- рия в микроконтролле- рах фирмы Silabs	Аналого-цифровые преобра- зователи. Аналоговые компа- раторы. Формирователи опор- ного напряжения. Управление семи сегментным матричным индикатором.	4	-	-	Управление мат- ричной клавиатурой.	2
8	Цифро-аналоговые преобразователи	Формирование импульсов специальной формы.	2	-	-	Технические средства обеспечения ввода-вывода аналоговых сигналов в ЭВМ.	4
	Всего аудиторных час	сов за 8-й семестр	20	-		20	
	Всего аудиторных час	сов за семестр	20	-		20	

Таблица 4 – Виды занятий по дисциплине и распределение аудиторных часов (очно-заочная форма обучения)

No	Наименование темы	Содержание лекционных занятий	Трудоемкость	Темы практических	Трудоемкость	Тема	Трудоемкость
п/п	(раздела) дисциплины	содержание лекционных занятии	в ак.ч.	занятий	в ак.ч.	лабораторных занятий	в ак.ч.
			9-й сем	иестр			
1	Основные понятия и определения	Принципы построения микропроцессорной техники. Архитектура микропроцессоров. Одно кристальные микроконтроллеры с CISC – архитектурою. Архитектура и функциональные возможности. САПР Proteus. Методы отладки, диагностики, моделирования и проектирования МПС.	2	-	-	Управление свето- диодами двумя кноп- ками. Управление се-	2
2	Архитектура и функциональные возможности одно кристальных микроконтроллеров фирмы Silabs	Основные характеристики микроконтроллеров фирмы Silabs. Структура процессора и логическая организация МК. Регистры специальных функций. Слово состояния программы. Особенности системы команд и приемы программирования.	-	-	-	мисегменным инди- катором.	
3	Организация ввода/вывода в МК	Схема выходного буфера порта ввода/вывода. Программируемые порты ввода/вывода. Кросс бар. Разработка блок схем алгоритмов управления программно-аппаратными средствами.	2	-	-	Спектральный анализ случайных процессов с использованием ДПФ. Управление семи сегментным	2
4	Организация системы памяти микроконтрол- леров	Память программ. Внутренняя память данных. Внешняя память данных. Интерфейс внешней памяти. Программное	2	-	-	матричным индикатором.	

9

\vdash	_
	$\overline{}$
_	_

No	Наименование темы	Содержание лекционных занятий		Темы практических		Тема	Трудоемкость
П/П	(раздела) дисциплины	•	в ак.ч.	занятий	в ак.ч.	лабораторных занятий	в ак.ч.
		формирование импульсов за-					
		данной длительности и пери-					
		ода. Управление матричной					
		клавиатурой.					
		Внутренний генератор син-					
		хронизации. Внешний генера-				Оценивание спек-	
5	Система синхрониза-	тор синхронизации. Организа-			_	тра сигналов на ос-	
	ции и сброса	ция системы сброса. Управле-		_	_	нове параметриче-	
		ние семи сегментными индика-	2			ских моделей. Фор-	2
		торами.				мирование импульсов	
	Таймеры в микро-	Таймеры и режимы их ра-				заданной длительно-	
6	контроллерах фирмы	боты. Программируемый мас-		-	-	сти и периода.	
	Silabs	сив-счетчиков РСА.					
		Аналого-цифровые преобра-					
	Аналоговая перифе-	зователи. Аналоговые компа-				Управление мат-	
7	рия в микроконтролле-	раторы. Формирователи опор-	2			ричной клавиатурой.	
/	рах фирмы Silabs	ного напряжения. Управление	2	-	-	Технические средства	2
	рах фирмы знаоз	семи сегментным матричным				обеспечения ввода-	2
		индикатором.				вывода аналоговых	
8	Цифро-аналоговые	Формирование импульсов	2			сигналов в ЭВМ.	
0	преобразователи	специальной формы.	2	1	-		
	Всего аудиторных час	сов за 9-й семестр	12	-		8	
	Всего аудиторных час	сов за семестр	12	-		8	

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценива- ния	Оценочное средство
ПК-2, ПК-5	Экзамен	Комплект контролирующих материалов для экзамена

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- тестовый контроль или устный опрос на коллоквиумах (2 коллоквиума) всего 60 баллов;
 - за выполнение лабораторных работ всего 40 баллов.

Экзамен проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Экзамен по дисциплине проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время экзамена студент имеет право повысить итоговую оценку. Экзамен по дисциплине проводится в форме устного экзамена по вопросам, представленным ниже, либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашнее задание

В качестве домашнего задания обучающиеся выполняют:

- проработка лекционного материала;
- выполнение лабораторных заданий.

6.3 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

- 1. Дайте определение двоичной, восьмеричной и шестнадцатеричной систем счисления. Приведите примеры перевода чисел между ними.
- 2. Что такое логические элементы (И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ)? Нарисуйте их условные обозначения и таблицы истинности.
- 3. Опишите принцип работы триггера. Какие типы триггеров вы знаете (RS, D, JK, T)?
- 4. Что такое комбинационные и последовательностные логические схемы? Приведите примеры.
- 5. Объясните понятие «карта Карно». Как она используется для минимизации логических функций?
- 6. Назовите основные параметры цифровых микросхем (задержка распространения, потребляемая мощность, уровень логического сигнала).
- 7. В чем разница между ТТЛ (Transistor-Transistor Logic) и КМОП (CMOS) технологиями?
- 8. Что такое «плавающий вход» (floating input) в цифровых схемах и почему его следует избегать?
- 9. Опишите принцип работы мультиплексора и демультиплексора. Приведите примеры их применения.
 - 10. Как работает шифратор и дешифратор? Где они используются?
- 11. Перечислите основные блоки микропроцессора (АЛУ, регистры, устройство управления).
- 12. Что такое архитектура фон Неймана и Гарвардская архитектура? В чем их различия?
 - 13. Опишите принцип работы стека в микропроцессорных системах.

- 14. Что такое прерывания (interrupts)? Как они обрабатываются процессором?
- 15. Объясните понятие «прямой доступ к памяти» (DMA). Для чего он используется?

6.4 Вопросы для подготовки к экзамену

- 1. Назовите популярные семейства микроконтроллеров (AVR, PIC, ARM). Их особенности.
- 2. Что такое регистры общего назначения (POH) и регистры специального назначения?
- 3. Опишите структуру памяти микроконтроллера (Flash, RAM, EEPROM).
- 4. Как работает таймер/счетчик в микроконтроллере? Приведите примеры его использования.
 - 5. Что такое ШИМ (PWM) и где он применяется?
- 6. В чем разница между ассемблером и языками высокого уровня (C, C++)?
- 7. Опишите этапы компиляции и загрузки программы в микроконтроллер.
- 8. Что такое прерывание по таймеру? Напишите псевдокод для его обработки.
- 9. Как организовать взаимодействие с периферийными устройствами через регистры?
- 10. Что такое конечный автомат и как его реализовать на микро-контроллере?
- 11. Опишите принцип работы аналого-цифрового преобразователя (АЦП).
- 12. Что такое UART, SPI, I²C? В чем их различия и области применения?
- 13. Как работает ЖК-дисплей и как подключить его к микроконтроллеру?
- 14. Опишите принцип работы датчика температуры (например, DS18B20) и его взаимодействие с МК.
- 15. Что такое драйвер двигателя (например, L298N)? Как управлять шаговым двигателем?
 - 16. Что такое FPGA? Чем отличается от микроконтроллера?
- 17. Опишите этапы проектирования цифрового устройства на ПЛИС (проектирование, синтез, размещение, трассировка).

- 18. Что такое язык описания аппаратуры (HDL)? Назовите примеры (VHDL, Verilog).
 - 19. Как реализовать конечный автомат на ПЛИС?
 - 20. Опишите применение IP-ядер в проектах на FPGA.
- 21. Что такое IoT (Интернет вещей)? Как микроконтроллеры используются в IoT-устройствах?
- 22. Опишите концепцию RISC-V. В чем её преимущества перед традиционными архитектурами?
 - 23. Что такое системы на кристалле (SoC)? Приведите примеры.
- 24. Как искусственный интеллект интегрируется с микропроцессорной техникой?
 - 25. Каковы перспективы развития квантовых процессоров?
- 26. Разработайте схему управления светодиодом через кнопку на микроконтроллере.
- 27. Напишите программу для измерения температуры с помощью АЦП и вывода данных на дисплей.
 - 28. Спроектируйте цифровой фильтр низких частот на ПЛИС.
- 29. Реализуйте обмен данными между двумя микроконтроллерами по SPI.
- 30. Рассчитайте энергопотребление устройства на базе МК при работе от батареи.

6.6 Примерная тематика курсовых работ

Курсовые работы не предусмотрены.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Основы микропроцессорной техники: учебное пособие / С. И. Лукьянов, Д. В. Швидченко, Е. С. Суспицын [и др.]. Москва; Вологда: Инфра-Инженерия, 2022. 172 с. ISBN 978-5-9729-0835-6. Текст: электронный. URL: https://znanium.com/catalog/product/1902461 (дата обращения: 26.03.2024).
- 2. Параскевов, А. В. Микропроцессоры : учебник/ А. В. Параскевов. 2-е изд., испр. и доп. Москва; Вологда: Инфра-Инженерия, 2023. 136 с. ISBN 978-5-9729-1291-9. Текст: электронный. URL: https://znanium.com/catalog/product/2095076 (дата обращения: 26.03.2024).

Дополнительная литература

- 1 Рассадкин, Ю. И. Микропроцессорная техника. Специальные вопросы проектирования: учебное пособие / Ю. И. Рассадкин, А. В. Синицын. Москва: Издательство МГТУ им. Баумана, 2016. 68 с. ISBN 978-5-7038-4413-7. Текст: электронный. URL: https://znanium.ru/catalog/product/2161407 (дата обращения: 26.03.2024).
- 2. Васильев, И. А. Основы микропроцессорной техники с элементами моделирования в среде Multisim: курс лекций / И. А. Васильев. Москва: Издательство МГТУ им. Баумана, 2017. 60 с. ISBN 978-5-7038-4647-6. Текст: электронный. URL: https://znanium.ru/catalog/product/2161596 (дата обращения: 26.03.2024).

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт. Алчевск. URL: https://library.dontu.ru. Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст : электронный.
- 3. Консультант студента : электронно-библиотечная система. Mockва. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст : электронный.
- 4. Университетская библиотека онлайн : электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст : электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям $\Phi\Gamma$ OC BO.

Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местополо- жение) учебных кабинетов
Аудитории для проведения лекционных и практических занятий, для самостоятельной работы:	
Компьютерный класс	ауд. <u>434</u> корп.
Персональные компьютеры, локальная сеть с выходом в Internet, проектор Epson, мультимедийный экран	<u>главный</u>

Лист согласования РПД

Разработал:

Старший преподаватель кафедры электроники и радиофизики

(должность)

<u>(подпись)</u> <u>С</u>

<u>О.В. Бакаев</u> (Ф.И.О.)

И.о. заведующего кафедрой электроники и радиофизики

(подпись)

<u>А.М.Афанасьев</u>

Протокол № <u>1</u> заседания кафедры электроники и радиофизики от <u>30.08. доду</u>

И.о. декана факультета информационных технологий и автоматизации производственных процессов

(подпись)

В.В. Дьячкова (Ф.И.О.)

Согласовано:

Председатель методической комиссии по направлению подготовки 03.03.03 Радиофизика (профиль «Инженерно-физические технологии в промышленности»)

(подпись)

<u> 4.М.Афанасьев</u> (Ф.И.О.)

Начальник учебно-методического центра

(подпись)

O.A. Коваленко (Ф.И.О.)

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения изменений				
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:			
Осног	вание:			
Подпись лица, ответственного за внесение изменений				