Документ подписан простой электронной подписью Информация о в**МИНЦИСТЕРСТВО НАУК**И И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБРНАУКИ РОССИИ) ФИО: Вишневский Дмитрий Александрович Должность: Ректор

Дата подписания: 30.04.2025 11:55:50 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ Уникальный программный ключОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ 03474917c4d012283e5ad**%дальтый государственный технический универси**тет» (ФГБОУ ВО «ДонГТУ»)

> Факультет Кафедра

фундаментального инженерного образования и инноваций архитектурного дизайна и отроизельных конструкций

> ВПРЖДАЮ проректор А.В. Кунченко

P	АБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ
	Инженерная и компьютерная графика
	(наименование дисциплины)
	13.03.03 Энергетическое машиностроение
	(код, наименование направления)
Автоматизирова	анные гидравлические и пневматические системы и агрегаты
	(профиль подготовки)
Квалификация	бакалавр
1	(бакалавр/специалист/магистр)
Форма обучения	очная
	(очная, очно-заочная, заочная)

1 Цели и задачи изучения дисциплины

Цели дисциплины. Целью изучения дисциплины «Инженерная и компьютерная графика» является развитие пространственного воображения и логического мышления; выработка знаний, умений и навыков, необходимых студентам для выполнения и чтения технических чертежей, эскизов деталей, для составления технической и конструкторской документации с применением программных и технических средств компьютерной графики.

Задачи изучения дисциплины:

- изучить теоретические основы инженерной и компьютерной графики, основные требования системы конструкторской документации, нанесение размеров; правила оформления рабочих чертежей и эскизов деталей в соответствии с ЕСКД, так же графической и текстовой конструкторской документации;
- научить использовать знания и понятия инженерной и компьютерной графики, определять геометрическую форму деталей по их изображениям, строить изображения простых предметов, выполнять и читать сборочный чертёж, рабочий чертёж, эскизы и чертежи технических деталей, учитывая требования стандартов ЕСКД; работать в универсальной среде КОМПАС;
- овладеть техникой выполнения графических работ ручным способом и с помощью компьютерных технологий, теоретическими основами построения чертежа, методами построения эскизов, чертежей стандартных деталей, разъёмных и неразъёмных соединений деталей и сборочных единиц, методами построения и чтения чертежей сборочных единиц, современными средствами компьютерной графики.

Дисциплина направлена на формирование общепрофессиональных компетенций (ОПК-3, ОПК-5) выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины — курс входит в БЛОК 1 «Дисциплины (модули)», часть, формируемую участниками образовательных отношений подготовки студентов по направлению 13.03.03 Энергетическое машиностроение (профиль «Автоматизированные гидравлические и пневматические системы и агрегаты»).

Дисциплина реализуется кафедрой архитектурного дизайна и строительных конструкций. Основывается на базе дисциплин, освоенных в общеобразовательном учреждении («Математика» (раздел «Геометрия»), «Черчение»).

Является основой для изучения следующих дисциплин: «Метрология, стандартизация и сертификация», «Программируемое машиностроительное черчение».

Для изучения дисциплины необходимы компетенции, сформированные у студента для решения профессиональных задач деятельности, связанных с чтением и выполнением технических чертежей металлургических машин с применением графических редакторов на основе изученных способов построения изображений пространственных образов.

Курс является фундаментальным в области создания технической документации для изготовления деталей и узлов машиностроительных конструкций, их расчётов и проектирования в соответствии с техническими заданиями, требованиями стандартов и использованием средств автоматизации проектирования.

Общая трудоемкость освоения дисциплины для очной формы обучения составляет 4,5 зачетных единицы, 162 ак.ч. Программой дисциплины предусмотрены лекции (36 ак.ч.), практические (72 ак.ч.) занятия и самостоятельная работа студента (54 ак.ч.).

Дисциплина изучается на 1 курсе в 1 и 2 семестре. Форма промежуточной аттестации – зачет.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Инженерная и компьютерная графика» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание компетенции	Код компетенции	Код и наименование индикатора достижения компетенции
Способен применять соответствующий физико- математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач	ОПК-3	ОПК-3.1. Применяет математический аппарат аналитической геометрии, линейной алгебры, дифференциального и интегрального исчисления, теории функций комплексного переменного, теории рядов и дифференциальных уравнений ОПК-3.2. Владеет численными методами, теорией вероятностей и математической статистики ОПК-3.3. Владеет навыками графического моделирования ОПК-3.4. Демонстрирует понимание физических явлений и применяет законы механики, термодинамики, электричества и магнетизма, оптики, квантовой механики и атомной физики (элементы) ОПК-3.5. Демонстрирует понимание химических процессов и знание основных законов химии
Способен рассчитывать элементы энергетических машин и установок с учетом свойств конструкционных материалов, динамических и тепловых нагрузок	ОПК-5	ОПК-5.1. Демонстрирует знание основных конструкционных материалов и способов их обработки, выполняет выбор материалов элементов энергетических машин и установок с учетом условий их работы ОПК-5.2. Выполняет графические изображения в соответствии с требованиями стандартов, в том числе с использованием средств автоматизации ОПК-5.3. Демонстрирует знание основных групп деталей и механизмов и проводит их расчеты ОПК-5.4. Демонстрирует знание основ механики деформируемого тела, теории прочности и усталостного разрушения, проводит расчеты элементов конструкций по заданной методике

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 4,5 зачётных единицы, 162 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим занятиям, текущему контролю, выполнение индивидуального задания, самостоятельное изучение материала и подготовку к зачету.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	AK.u	I. ПО Страм
вид учестой рассты	Decro ak.4.	1	2 2
Аудиторная работа, в том числе:	108	54	54
Лекции (Л)	36	18	18
Практические занятия (ПЗ)	72	36	36
Лабораторные работы (ЛР)	-	-	-
Курсовая работа/курсовой проект	-	-	-
Самостоятельная работа студентов (СРС), в том	54	36	18
числе:	34	30	10
Подготовка к лекциям	8	4	4
Подготовка к лабораторным работам	-	-	-
Подготовка к практическим занятиям / семинарам	14	10	4
Выполнение курсовой работы / проекта	-	-	
Расчетно-графическая работа (РГР)	16	12	4
Реферат (индивидуальное задание)	-	-	-
Домашнее задание		-	-
Подготовка к контрольной работе	2	-	2
Подготовка к коллоквиуму	4	4	-
Аналитический информационный поиск		-	
Работа в библиотеке	2	2	-
Подготовка к зачету	8	4	4
Промежуточная аттестация – зачет (3)	3 (2)	3 (2)	3 (2)
Общая трудоемкость дисциплины			
ак.ч.	162	90	72
3.e.	4,5	2,5	2

5 Содержание дисциплины

Первый семестр

С целью освоения компетенции, приведенной в п.3 дисциплина разбита на 8 тем:

- тема 1 (Метод проекций. Образование комплексного чертежа точки);
- тема 2 (Проецирование прямой);
- тема 3 (Проецирование плоскости);
- тема 4 (Взаимное положение элементов пространства);
- тема 5 (Преобразование комплексного чертежа);
- тема 6 (Поверхности);
- тема 7 (Взаимное пересечение поверхностей);
- тема 8 (Аксонометрические проекции).

Второй семестр

С целью освоения компетенции, приведенной в п.3 дисциплина разбита на 8 тем:

- тема 1 (Введение в компьютерную графику. Основы работы с программным обеспечением КОМПАС);
 - тема 2 (Геометрическое черчение. Нанесение размеров. Изображения);
 - тема 3 (Резьба и резьбовые изделия);
 - тема 4 (Разъёмные, неразъёмные соединения);
 - тема 5 (Рабочие чертежи и эскизы деталей);
 - тема 6 (Зубчатые передачи);
 - тема 7 (Сборочный чертёж);
 - тема 8 (Чтение и деталирование сборочных чертежей).

Виды занятий по дисциплине и распределение аудиторных часов для очной формы приведены в таблице 3.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
				1 семестр			
1	Методы проецирования. Образование комплексного чертежа точки	Предмет и метод начертательной геометрии. Способы проецирования. Свойства центрального и ортогонального проецирования	2	Требования стандартов к оформлению чертежей. Форматы (ГОСТ 2.301-68) и основные надписи (ГОСТ 2.104-2006). Масштабы (ГОСТ 2.302-68), линии (ГОСТ 2.303-86), шрифты чертёжные (ГОСТ 2.304-81)	2	_	_
2	Проецирование прямой	Прямоугольное проецирование элементов пространства. Проецирование точки, прямой. Три закона проекционной связи на эпюре. Нахождение натуральной величины прямой общего положения. Следы прямой. Прямые частного положения: прямые уровня, проецирующие прямые. Взаимное положение прямых.	4	Решение задач по теме «Проецирование точки». Решение задач по теме «Проецирование прямых». Выдача графического семестрового задания «Построение проекций наклонной призмы».	2 4 2	_	
3	Проециро- вание плоскости	Проецирование плоскости. Способы задания плоскости на чертеже. Классификация плоскостей. Плоскости общего положения. Следы плоскости. Прямые и точки плоскости. Плоскости частного положения.	2	Решение задач по теме «Проецирование плоскостей».	4	_	_

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
4	Взаимное положение элементов пространства	Взаимное положение элементов пространства. Взаимное положение двух плоскостей: пересечение, параллельность. Взаимное положение прямой и плоскости. Перпендикулярность прямой и плоскости.	2	Выдача графического семестрового задания «Построение проекций линии пересечения плоскостей». Выдача графического семестрового задания «Перпендикулярность прямой и плоскости».	2	_	_
5	Преобразова- ние комплексного чертежа	Преобразование комплексного чертежа. Способы замены плоскостей проекций и плоскопараллельного перемещения.	2	Решение задач по теме «Способы преобразования эпюра». Выдача графического семестрового задания «Плоскопараллельное перемещение». Выдача графического семестрового задания «Замена плоскостей проекций».	2	_	_
6	Поверхности	Образование и классификация поверхностей. Многогранные и криволинейные поверхности. Пересечение поверхностей плоскостью.	2	Решение задач по теме «Поверхности».	4		_
7	Взаимное пересечение поверхностей	Взаимное пересечение поверхностей. Пересечение многогранников. Пересечение поверхностей вращения.	2	Решение задач по теме «Пересечение поверхностей». Выдача графического семестрового задания «Построение линии пересечения поверхностей».	2	_	_
8	Аксонометричес кие проекции	Аксонометрические проекции (ГОСТ 2.317-2011).	2	Выдача графического семестрового задания «Многогранник и изометрия».	2	_	-
	Всего аудиторн	ых часов за 1 семестр	18	36		-	_
	Введение в	Введение в		2 семестр Основы работы с программным			
1	компьютерную	компьютерную графику.	2	обеспечением КОМПАС. Вид	2		

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
	графику	Основы работы с программным обеспечением КОМПАС		экрана, меню, инструментарий, настройка параметров графического редактора.			
2	Геометрическое черчение. Нанесение размеров. Изображения	Нанесение размеров. Геометрическое черчение. Виды. Разрезы. Сечения	2	Геометрическое черчение. Виды. Разрезы. Сечения (ГОСТ 2.305-2008)	2	_	_
3	Резьба и резьбовые изделия	Основные параметры резьбы. Классификация. Изображение резьбы на чертежах	2	Изображение наружной и внутренней резьб (ГОСТ 2.311-68)	4	_	_
4	Разъёмные, неразъёмные соединения	Разъёмные, неразъёмные соединения	2	Резьбовые соединения. Стандартные крепёжные изделия с резьбой. Неразъёмные соединения (ГОСТ 2.313-82)	4		_
5	Рабочие чертежи и эскизы деталей	Правила выполнения и чтения рабочих чертежей. Эскизирование деталей. Основные требования, предъявляемые к эскизам. Этапы выполнения эскизов.	2	Последовательность выполнения эскизов. Выполнение с натуры детали средней сложности. Рабочий чертёж детали "Вал". Элементы деталей: центровые отверстия, галтели, шпоночные и шлицевые соединения.	2	_	_
6	Зубчатые передачи	Зубчатые передачи	2	Зубчатые передачи. Элементы зубчатого колеса. Изображение. Правила выполнения.	4	_	_
7	Сборочный чертёж	Сборочный чертёж	4	Сборочный чертёж. Последовательность выполнения эскизов. Составление сборочного чертежа, спецификации (ГОСТ 2.108-68). Требования к выполнению.	6	_	_
8	Чтение и деталирование	Чертежи общего вида.	2	Чтение и деталирование чертежей общего вида.	4	_	_

№	Наименование	Содержание лекционных	Трупоемкості		Трупоемкості	Тема	Трудоемкость
Π/Π	темы (раздела)	содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Грудоемкость в ак.ч.	лабораторных	в ак.ч.
	дисциплины	Заплтии	Б ак. ч.		Б ак. ч.	занятий	
	сборочных						
	чертежей						
	Всего аудиторн	ных часов за 2 семестр	18	36		-	_
	Всего аудиторн	ных часов	54	72			

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/sveden/eduQuality) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 4.

Таблица 4 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
ОПК-3, ОПК-5	Зачет	Комплект контролирующих материалов для зачета

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- тестовый контроль или письменный опрос на коллоквиумах (2 работы) всего 36 баллов;
 - ведение конспекта лекций всего 4 балла;
- за выполнение индивидуальной расчетно-графической работы в виде альбома графических работ всего 60 баллов.

Зачет проставляется автоматически, если студент набрал в течение семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Зачет по дисциплине «Инженерная и компьютерная графика» проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время зачетной недели студент имеет право повысить итоговую оценку либо в форме письменного ответа по приведенным ниже вопросам (п.п. 6.5), либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 5.

Таблица 5 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашнее задание

В качестве домашнего задания студенты выполняют:

- работу над дополнением конспекта изученного лекционного материала;
- расчетно-графическую работу в виде альбома графических работ, в том случае, если какая-либо ее часть не выполнена в течение аудиторных практических занятий.

6.3 Темы для рефератов (презентаций)

Рефераты не предусмотрены

6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Тема 1 Метод проекций. Образование комплексного чертежа точки

- 1) Что называется проекцией, проецированием и каковы основные способы проецирования?
- 2) В чем заключается сущность центрального проецирования? Как строят центральную проекцию точки?
- 3) В чем сущность способа проецирования, называемого параллельным?
 - 4) Как строят параллельную проекцию прямой линии?
- 5) Может ли параллельная проекция прямой линии представлять собой точку?
- 6) В каком случае при параллельном проецировании отрезок прямой линии проецируется в натуральную величину?
 - 7) Какие знаете свойства ортогонального проецирования?
 - 8) В чем сущность метода Монжа?
 - 9) Как получается комплексный чертеж (эпюр) Монжа?
 - 10) На каких плоскостях проекций видны расстояния от точки :
 - а) до Π_1 , б) до Π_2 , в) до Π_3 ?
 - 11) Сформулируйте три закона проекционной связи.
- 12) Как строят профильную проекцию точки по ее фронтальной и горизонтальной проекциям?
 - 13) Что такое «постоянная прямая», для чего ее используют?
- 14) Сколько проекций точки вполне определяют ее положение в пространстве?
 - 15) Что такое прямоугольные координаты точки и в какой последова-

тельности их записывают в обозначении точки?

- 16) Какими координатами определяются горизонтальная, фронтальная и профильная проекция точки?
 - 17) Что означает равенство нулю одной из координат точки?
 - 18) Что такое четверти пространства, как они образуются?
 - 19) Что такое октанты, как они образуются?

Тема 2 Проецирование прямой

- 1) Какими способами задается прямая в пространстве?
- 2) Какими элементами определяется прямая линия на эпюре?
- 3) Какое положение могут занимать прямые в пространстве?
- 4) Как по отношению к плоскостям проекций может располагаться прямая?
- 5) При каком положении относительно плоскостей проекций прямую называют прямой общего положения?
- 6) Как располагаются на комплексном чертеже проекции прямой общего положения?
 - 7) Какие существуют частные положения прямых?
- 8) Какие прямые называют прямыми уровня? Сколько существует прямых уровня?
- 9) Опишите характерный признак расположения проекций горизонтали, фронтали и профильной прямой на эпюре.
- 10) Как располагаются на комплексном чертеже проекции проецирующих прямых?
- 11) На какие плоскости проекций отрезок горизонтально-проецирующей прямой проецируется в натуральную величину?
- 12) На какие плоскости проекций отрезок фронтально-проецирующей прямой проецируется в натуральную величину?
- 13) Какие точки называются конкурирующими? для чего их используют?
- 14) Как определить видимость элементов пространства относительно плоскости проекций?
- 15) Как определить натуральную величину отрезка прямой общего положения?
- 16) Как определить углы наклона прямой общего положения к плоскостям проекции?
- 17) В чем сущность способа прямоугольного треугольника? Опишите алгоритм определения натуральной величины отрезка способом прямоугольного треугольника?
 - 18) Каким может быть взаимное положения прямых в пространстве?
- 19) Как на чертеже располагаются проекции пересекающихся, параллельных и скрещивающихся прямых?
 - 20) Могут ли проекции скрещивающихся прямых быть параллельны?
- 21) Могут ли проекции двух пересекающихся прямых изображаться одной линией?
 - 22) Почему для профильных прямых вопрос о взаимном их положении

следует решать на профильной плоскости проекций?

- 23) Сформулируйте признак принадлежности точки прямой линии?
- 24) Что такое следы прямой? Опишите алгоритм построения следов прямой на чертеже.

Тема 3 Проецирование плоскости

- 1) Какими элементами пространства можно задать плоскость на чертеже?
 - 2) Что называют следом плоскости на плоскости проекций?
- 3) Где располагаются фронтальная проекция горизонтального следа и горизонтальная проекция фронтального следа плоскости?
- 4) Как относительно плоскостей проекций может быть расположена плоскость?
 - 5) Какие плоскости называются проецирующими?
 - 6) Какие плоскости называются плоскостями уровня?
- 7) Какими свойствами обладают следы плоскостей частного положения?
- 8) В чем заключается собирательное свойство следов плоскостей частного положения?
- 9) Как определяется на чертеже, принадлежит ли прямая данной плоскости?
- 10) Как построить на чертеже точку, принадлежащую данной плоскости?
- 11) Что такое горизонталь и фронталь плоскости? Какими свойствами они обладают?
- 12) Какие плоскости можно провести через фронтально-проецирующую прямую?
- 13) Можно ли провести проецирующую плоскость через прямую общего положения?
 - 14) Как можно перезадать плоскости следами?

Тема 4 Взаимное положение элементов пространства

- 1) Какое взаимное положение могут занимать две плоскости?
- 2) Сформулируйте признак параллельности двух плоскостей.
- 3) Как взаимно располагаются одноименные следы двух параллельных между собой плоскостей общего положения?
 - 4) Как строится линия пересечений двух плоскостей?
- 5) В чем заключается в общем случае алгоритм построения точки пересечения прямой с плоскостью?
- 6) Опишите алгоритм построения линии взаимного пересечения двух плоскостей, заданных треугольниками?
- 7) Как строят проекции линии пересечения двух плоскостей, одна из которых проецирующая?
- 8) Как провести через точку плоскость, параллельную заданной плоскости?
- 9) Как проверить на чертеже, параллельны ли между собой заданные плоскости?

- 10) Как располагаются проекции перпендикуляра к плоскости?
- 11) Как провести перпендикуляр из точки на прямую общего положения?
 - 12) Как построить две взаимно перпендикулярные прямые?
 - 13) Как построить взаимно перпендикулярные плоскости?
- 14) Перпендикулярны ли плоскости общего положения одна к другой, если их одноименные следы взаимно перпендикулярны?

Тема 5 Преобразование комплексного чертежа

- 1) С какой целью производится преобразование комплексного чертежа?
- 2) В чем сущность способа замены плоскостей проекций?
- 3) Какие позиционные задачи решаются при помощи замены плоскостей проекций?
- 4) Как задают новую ось проекций для преобразования чертежа прямой общего положения в чертеж прямой уровня?
- 5) Как задают новую ось проекций для преобразования чертежа прямой уровня в чертеж проецирующей прямой?
- 6) В какой последовательности чертеж прямой общего положения преобразуется в чертеж проецирующей прямой?
- 7) Как задают новую ось проекций для преобразования чертежа плоскости общего положения в чертеж проецирующей плоскости?
- 8) Как задают новую ось проекций для преобразования чертежа плоскости общего положения в чертеж проецирующей плоскости?
- 9) Как задают новую ось проекций для преобразования чертежа проецирующей плоскости в чертеж плоскости уровня?
- 10) В какой последовательности чертеж плоскости общего положения преобразуется в чертеж плоскости уровня?
- 11) Как чертеж плоскости общего положения, заданной следами, преобразуется в чертеж проецирующей плоскости?
- 12) В чем заключается сущность способа плоскопараллельного перемещения?
- 13) Как перемещаются фронтальные проекции точек геометрической фигуры при плоскопараллельном перемещении ее относительно горизонтальной плоскости проекций?
- 14) Почему не изменяется длина горизонтальной проекции отрезка при плоскопараллельном перемещении его относительно горизонтальной плоскости проекций?
- 15) Какова последовательность плоскопараллельного перемещения отрезка прямой из общего положения в проецирующее?
 - 16) Как плоскость общего положения преобразовать в проецирующую?
 - 17) Как проецирующую плоскость преобразовать в плоскость уровня?
- 18) В какой последовательности плоскость общего положения преобразуется в плоскость уровня?
- 19) Для решения каких задач рационально использовать способ плоскопараллельного перемещения?

Тема 6 Поверхности

- 1) На какие классы классифицируются поверхности?
- 2) На какие группы делятся гранные поверхности?
- 3) Опишите принцип образования призматической поверхности и ее определители.
- 4) Опишите принцип образования пирамидальной поверхности и ее определители.
 - 5) На какие группы делятся кривые поверхности?
 - 6) Какие поверхности относятся к линейчатым поверхностям?
- 7) Опишите принцип образования цилиндрической поверхности и ее определители.
- 8) Опишите принцип образования конической поверхности и ее определители.
- 9) Какие поверхности относятся к нелинейным поверхностям (поверхностям вращения)?
- 10) Опишите принцип образования шаровой поверхности (сферы) и ее определители.
- 11) Опишите принцип образования торовой поверхности и ее определители.
- 12) Какие поверхности относятся к развертываемым? Сформулируйте определение развертываемых поверхностей.
- 13) Какие поверхности относятся к неразвертываемым? Сформулируйте определение неразвертываемых поверхностей.

Тема 7 Взаимное пересечение поверхностей

- 1) Какая линия образуется в пересечении двух многогранников? Двух поверхностей вращения? Многогранника с телом вращения?
- 2) По какому алгоритму решаются задачи на пересечение поверхностей?
 - 3) Как определяется видимость точек пересечения?
- 4) Как пересекаются между собой поверхности вращения с общей осью?
- 5) По каким линиям пересекаются коническая, цилиндрическая и сферическая поверхности плоскостью?
- 6) В чем заключается общий прием построения кривой линии, получающейся при пересечении конической поверхности плоскостью?
- 7) Как строится малая ось эллипса, получаемого при пересечении конуса вращения плоскостью?
- 8) В чем сущность способа вспомогательных секущих плоскостей при построении линии пересечения двух поверхностей?
 - 9) Какие поверхности называются соосными?
 - 10) По каким линиям пересекаются соосные линии вращения?
- 11) Когда можно использовать вспомогательные сферы при построении линии пересечения двух поверхностей?
- 12) Сформулируйте план решения задачи при помощи сферических посредников?

13) Когда применяется способ концентрических и эксцентрических сфер?

Тема 8 Аксонометрические проекции

- 1) В чем преимущество аксонометрических проекций перед комплексными?
 - 2) В чем сущность аксонометрического проецирования?
 - 3) Что называется коэффициентами искажения?
 - 4) Как классифицируют аксонометрические проекции?
- 5) Как строить оси прямоугольной изометрии и чему равны коэффициенты искажения по аксонометрическим осям?
- 6) Как строить оси прямоугольной диметрин и чему равны коэффициенты искажения по аксонометрическим осям?
- 7) Как строить окружность в изометрии, если плоскость окружности параллельна плоскости проекций Π_1 ? плоскости Π_2 ? плоскости Π_3 ?
- 8) Как строить окружность в прямоугольной диметрии, если плоскость окружности параллельна плоскости проекций Π_1 ? плоскости Π_2 ? плоскости Π_3 ?
- 9) Как строить окружность во фронтальной диметрии при различном ее положении по отношению к плоскостям проекций?
- 10) Как строить окружность во фронтальной косоугольной изометрии? в горизонтальной косоугольной изометрии?

6.5 Вопросы для подготовки к зачету (тестовому коллоквиуму)

Первый семестр

- 1. Что называется проекцией, проецированием и каковы основные способы проецирования?
- 2. В чем заключается сущность центрального и параллельного проецирования?
- 3. Что представляет собой метод ортогональных проекций (метод Монжа)?
 - 4) Как образуется комплексный чертеж точки, эпюр Монжа?
 - 5) Сформулируйте три закона проекционной связи на эпюре.
 - 6) Опишите классификацию прямых.
 - 7) Какими способами задается прямая линия на чертеже?
- 8) При каком положении относительно плоскостей проекций прямую называют прямой общего положения? Приведите пример эпюра прямой общего положения.
 - 9) Сформулируйте признак принадлежности точки прямой.
- 10) Опишите алгоритм определения натуральной величины отрезка прямой общего положения (правило прямоугольного треугольника).
- 11) Что такое следы прямой? Сформулируйте алгоритм построения следов прямой общего положения? следов прямой уровня.
- 12) Какие прямые называют прямыми уровня? Сколько существует прямых уровня?
 - 13) Опишите характерный признак расположения проекций

горизонтали, фронтали и профильной прямой на эпюре.

- 14) Как располагаются на комплексном чертеже проекции проецирующих прямых?
- 15) Опишите классификацию плоскостей. Какие существуют способы задания плоскости на чертеже?
- 16) Охарактеризуйте плоскость общего положения. Как изображаются на эпюре проекции плоскости общего положения?
- 17) Какие линии называются следами плоскости? Приведите пример следов плоскости общего положения.
- 18) Опишите признаки принадлежности прямой общего положения плоскости. Постройте эпюр прямой, принадлежащей плоскости общего положения.
 - 19) Сформулируйте признаки принадлежности точка плоскости.
- 20) Какие существуют прямые особого положения плоскости. Дайте их характеристики и постройте примеры их комплексных чертежей?
- 21) Какие плоскости называются плоскостями уровня? Постройте примеры их комплексных чертежей.
- 22) Какие плоскости называются проецирующими? Постройте примеры их комплексных чертежей.
 - 23) Какие существуют варианты взаимного положения прямых?
 - 24) Сформулируйте признак параллельности двух прямых.
 - 25) Сформулируйте признак пересечения двух прямых.
- 26) Какие существуют варианты взаимного положения двух плоскостей? Опишите каждый из них.
- 27) Какие существуют варианты взаимного положения прямой и плоскости? Опишите каждый из них.
 - 28) Сформулируйте признак параллельности двух плоскостей.
- 29) В чем заключается в общем случае алгоритм построения точки пересечения прямой с плоскостью?
- 30) С какой целью производится преобразование комплексного чертежа?
 - 31) В чем сущность способа замены плоскостей проекций (ЗПП)?
- 32) Какие позиционные задачи решаются при помощи замены плоскостей проекций?
- 33) В какой последовательности выполняется преобразование плоскости общего положения в плоскость уровня и в проецирующую плоскость способом ЗПП?
- 34) В какой последовательности выполняется преобразование прямой общего положения в прямую уровня и в проецирующую прямую способом 3ПП?
- 35) В какой последовательности выполняется преобразование прямой общего положения в проецирующую прямую и в прямую уровня способом плоскопараллельного перемещения (ППП)?
- 36) В какой последовательности выполняется преобразование плоскости общего положения в плоскость уровня и в проецирующую

плоскость способом ППП?

- 37) Опишите принцип образования многогранных поверхностей: призматической, пирамидальной, их определители.
- 38) Опишите принцип образования линейных поверхностей: цилиндрической, конической, их определители.
- 39) Опишите характер линии пересечения плоскостью призмы и пирамиды. Постройте эпюры пересечения плоскостью призмы и пирамиды.
- 40) Опишите характер линии пересечения плоскостью цилиндра и конуса. Постройте эпюры пересечения плоскостью цилиндра и конуса.
- 41) Опишите характер линии пересечения плоскостью сферы. Что такое очерковые линии сферы? Постройте эпюр пересечения плоскостью сферы.
- 42) В чем сущность способа вспомогательных секущих плоскостей при построении линии пересечения двух поверхностей?
- 43) В чем заключается сущность аксонометрического проецирования. Опишите виды аксонометрических проекций. Охарактеризуйте расположение осей и коэффициенты искажения при каждом виде аксонометрических проекций.

Второй семестр

Геометрическое черчение

- 1) Как оформляется поле чертежа формата А3, А4?
- 2) Что такое масштаб? Какие масштабы рекомендует ГОСТ 2.302-68.
- 3) Какие размеры проставляются на чертеже, выполненном в масштабе отличном от масштаба 1:1.
 - 4) Перечислить основные правила простановки размеров на чертежах.
- 5) Назвать основные типы линий, которые используются во время выполнения чертежей.
- 6) На каком минимальном расстоянии проводятся размерные линии вне контура? От параллельной размерной линии?
- 7) Как проводят размерные и выносные линии для прямолинейного отрезка? Окружности? Дуги? Угла?
 - 8) Как на чертеже обозначаются отверстия одинакового диаметра?
 - 9) Что называется сопряжением? Какие его основные элементы?
- 10) Постройте сопряжение двух взаимно перпендикулярных прямых дугой окружности радиусом 30 мм.
- 11) Как производится расчёт конусности и построение её на чертеже? Как изображается знак конусности?
 - 12) Как выполняется построение и обозначение уклона на чертеже?
 - 13) Какие общие правила выполнения штриховки на чертеже.

Проекционное черчение

- 14) Дайте определение типам изображений: виды, разрезы, сечения.
- 15) Как классифицируются виды? Что такое основные, дополнительные, местные виды? Какие особенности их изображения и

обозначения на чертеже?

- 16) Опишите алгоритм соединения половины вида с половиной разреза на чертеже.
 - 17) В чем отличие разреза от сечения?

Резьба. Крепёжные изделия и их соединения

- 18) Что такое резьба? Опишите основные параметры резьбы, ее классификацию.
- 19) Как условно изображается на чертеже резьба на стержне, в отверстии, в соединении?
- 20) Перечислите профили резьб. Приведите их изображение, обозначение на чертеже.
 - 21) Для чего нужны проточки, фаски на резьбе?
- 22) Как изображаются и обозначаются на чертеже проточки: наружная и внутренняя. Как выбираются их размеры и изображение?
- 23) Как изображаются и обозначаются фаски на чертеже? Как выбираются их размеры?
- 24) Что такое разъёмные и неразъёмные соединения? Перечислить. Их отличие.
- 25) Из каких деталей состоит болтовое соединение, соединение шпилькой, соединение винтом?
 - 26) Как наносится штриховка в разрезах для смежных деталей?
- 27) Приведите основные различия между соединением деталей болтом и шпилькой.

Неразъёмные соединения

- 28) Дайте определение сварным соединения.
- 29) Перечислите возможное взаимное расположение свариваемых деталей в сварном соединении.
 - 30) Дайте определение и приведите классификацию сварных швов.
 - 31) Что такое катет шва?
 - 32) Как изображаются и обозначаются сварные соединения?
 - 33) Дайте определение соединения пайкой.

Эскиз и рабочий чертеж детали

- 34) Что такое эскиз? Опишите последовательность выполнения.
- 35) Что такое деталь, рабочий чертеж детали?
- 36) Какие знаете конструктивные элементы детали типа "вал", "деталь с резьбой"?
- 37) Как изображается канавка для выхода шлифовального круга? Как выбираются ее размеры?
- 38) Приведите обозначение, изображение шпоночного паза. Опишите его выбор и назначение.
- 39) Приведите обозначение и изображение центровых отверстий. Опишите их выбор и назначение.
 - 40) Приведите обозначение и изображение шлицевых соединений.

Опишите их выбор и назначение.

41) Что такое галтель, квадрат, лыска?

Колесо зубчатое

- 42) Какое назначение зубчатых передач?
- 43) Раскройте понятия ведущее колесо, ведомое, колесо зубчатое, шестерня, зуб.
 - 44) Перечислите элементы зуба.
- 45) Опишите основные параметры для расчёта зубчатого колеса. Как изображаются зубчатые колеса на чертеже?
 - 46) Опишите последовательность выполнения эскиза колеса зубчатого.

Сборочный чертёж

- 47) Что такое сборочный чертёж? Дайте его определение и содержание.
- 48) Какие условности и упрощения при выполнении сборочного чертежа?
- 49) Опишите последовательность заполнения спецификации на сборочную единицу.
- 50) Как выполняется простановка позиций отдельных деталей на сборочном чертеже?
 - 51) В какой последовательности выполняется сборочный чертеж?
 - 52) Какие чертежи называются чертежами общего вида?
 - 53) Последовательность деталирования чертежей общего вида?
 - 54) Какие требования предъявляются к рабочим чертежам деталей?
 - 55) Что такое шероховатость? В чем она измеряется?

Компьютерная графика

- 56) Опишите последовательность команд в графическом редакторе КОМПАС для создания нового чертежа.
- 57) Как в графическом редакторе КОМПАС изменить формат и ориентацию чертежа?
- 58) Как в графическом редакторе КОМПАС редактируется основная надпись чертежа?
- 59) Какие основные панели команд используются для создания чертежа детали?
- 60) Что такое привязки, для чего они нужны и на какие группы они делятся?

6.6 Примерная тематика курсовых работ

Курсовые работы не предусмотрены.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература (1 семестр)

- 1. Фролов С.А. Начертательная геометрия: Учебник. 3-е изд., перераб. и доп. М.: ИНФРА-М, 2023. 285 с. URL: https://www.ozon.ru/product/nachertatelnaya-geometriya-uchebnik-studentam-vuzov-frolov-sergey-arkadevich-801875415/ (дата обращения: 29.08.2023). URL: Режим доступа: для авторизир. пользователей.
- 2. Сидякина, Т. И. Начертательная геометрия : учебное пособие для СПО / Т. И. Сидякина, Л. Ю. Стриганова ; под редакцией Н. В. Семеновой. 2-е изд. Саратов : Профобразование, 2021. 105 с. ISBN 978-5-4488-1131-9. Текст : электронный // Электронный ресурс цифровой образовательной среды СПО PROFобразование : [сайт]. URL: https://profspo.ru/books/104909 (дата обращения: 29.08.2023). Режим доступа: для авторизир. пользователей.

Основная литература (2 семестр)

- 1. Инженерная графика. Курс лекций: учебное пособие / Л.А. Феоктистова, Т.В. Рзаева, М.М. Гимадеев: под редакцией И.П. Талиповой— Набережные Челны: Издательско-полиграфический центр Набережночелнинского института К(П)ФУ, 2018. 172с. URL: https://kpfu.ru/staff files/F452674618/Lekcii IG 18.docx.pdf (дата обращения: 29.08.2023). Режим доступа: для авторизир. пользователей.
- 2. Учаев, П. Н. Инженерная графика : учебник / П. Н. Учаев, А. Г. Локтионов, К. П. Учаева ; под общ. ред. П. Н. Учаева. Москва ; Вологда : Инфра- Инженерия, 2021. 304 с. URL: https://litportal.ru/download/avtory/a-g-loktionov/kniga-inzhenernaya-grafika-65931757-1229916.html (дата обращения: 29.08.2023). Режим доступа: для авторизир. пользователей.

Дополнительная литература (1 семестр)

- 1. Начертательная геометрия и инженерная графика: учебное пособие с примерами решений задач для практических занятий студентов по направлению 190100.62 очной формы обучения / И.И. Астапкович и др. Красноярск: СибГТУ, 2012. 56 с. URL: https://studfile.net/preview/4404747/ (дата обращения: 29.08.2023). Режим доступа: для авториз. пользователей. Текст: электронный.
- 2. Хаскин, А.М. Черчение:/ Хаскин А.М. Учебник для техникумов.- 3-е изд., перераб. и доп. Киев: Вища школа. Головное изд-во, 1979. 440с. URL: <a href="https://moodle.dstu.education/pluginfile.php/205015/mod_resource/content/1/%D0%A5%D0%B0%D1%81%D0%BA%D0%B8%D0%BD%20%D0%90.%20%D0%9C.%20%D0%A7%D0%B5%D1%80%D1%87%D0%B5%D0%BD%D0%B8%D

- <u>0%B5.pdf</u> (дата обращения: 29.08.2023). Режим доступа: для авториз. пользователей. Текст : электронный.
- 4. Гордон, В.О. Курс начертательной геометрии. / Гордон В.О., Семенцов Огиевский М.А. М.: Наука, 1988. 272с. URL: https://moodle.dstu.education/course/view.php?id=3877 (дата обращения: 29.08.2023). Режим доступа: для авториз. пользователей. Текст: электронный
- 5. Чекмарев, А.А. Инженерная графика. / Чекмарев А.А. -3-е изд.- М.: Высшая школа, 2000. 365с. URL: https://moodle.dstu.education/pluginfile.php/206329/mod_resource/content/1/%D0%A7%D0%B5%D0%B5%D0%B0%D0%B5%D0

— Режим доступа: для авториз. пользователей. — Текст: электронный

Дополнительная литература (2 семестр)

- 1. Михайленко, В.Е. Инженерная и компьютерная графика: учебник для студ. высших учеб. завед./ Михайленко В.Е., Ванин В.В., Ковалёв С.Н. К.: Каравелла, 2004. 336с. https://riskjort.netlify.app/mihajlenko-veinzhenernaya-i-kompjyuternaya-grafika (дата обращения: 29.08.2023). Режим доступа: для авториз. пользователей. Текст: электронный.
- 2. Соколова, Т.Ю. AutoCAD./ Лёгкий старт. СПб: Питер, 2006.-160с. https://www.livelib.ru/book/1000117260-autocad-legkij-start-t-sokolova?ysclid=lqalujr91r112420593 (дата обращения: 29.08.2023). Режим доступа: для авториз. пользователей. Текст: электронный.

Учебно-методическое обеспечение

1. Методические указания к выполнению семестровых графических (контрольных) работ по дисциплине "Начертательная геометрия, инженерная и компьютерная графика"/Сост. Кубышкина И.А., Сова И.О. - Алчевск, ДонГТУ, - 2018. -30с. https://moodle.dstu.education/pluginfile.php/204888/mod_resource/content/7/Kubishkina Sova M UK NG.pdf — Режим доступа: для авториз. пользователей. — Текст: электронный

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт. Алчевск. URL: <u>library.dstu.education</u>. Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст : электронный.
- 3. Консультант студента : электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст : электронный.
- 4. Университетская библиотека онлайн : электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст :

электронный.

5. IPR BOOKS : электронно-библиотечная система. — Красногорск. — URL: http://www.iprbookshop.ru/. — Текст : электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местоположение) учебных
	кабинетов
Аудитории для проведения лекционных, практических занятий, для самостоятельной работы: Учебная аудитория (24 посадочных мест), оборудована учебной мебелью (столы – 12 шт., стулья – 24 шт.), доска чертежная, шкаф с наглядными и макетами и пособием.	ауд. <u>1412,</u> корп. <i>первый</i>

Лист согласования РПД

Разработал		
ст. препод. кафедры архитектурного дизайна и строительных конструкций (должность)	- Е	<u>Е.В. Базарова</u> (Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
Заведующий кафедрой архитектурного дизайна и строительных конструкций	(подпись)	В. В. Бондарчук (Ф.И.О.)
Протокол № заседания кафедры архитектурного дизайна и строительных конструкций	от 31.08	20 <u>23</u> г.
И.о. декана факультета ФИОИ	(подпись)	3.В. <u>Дьячкова</u> (Ф.И.О.)
Согласовано		
Председатель методической комиссии по направлению подготовки 13.03.03 Энергетическое машиностроение (Автоматизированные гидравлические и пневматические системы и агрегаты)	Уподинев) В.К). <u>Доброногова</u> (Ф.Н.О.)
Начальник учебно-методического центра	(подпись)).А. <u>Коваленко</u> (ф.и.о.)

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения				
изменений				
БЫЛО:	СТАЛО:			
Основ	зание:			
Подпись лица, ответственного за внесение изменений				